View Chapter

Chapter 22 — Modular Robots

I-Ming Chen and Mark Yim

This chapter presents a discussion of modular robots from both an industrial and a research point of view. The chapter is divided into four sections, one focusing on existing reconfigurable modular manipulators typically in an industry setting (Sect. 22.2) and another focusing on self-reconfigurable modular robots typically in a research setting (Sect. 22.4). Both sections are sandwiched between the introduction and conclusion sections.

This chapter is focused on design issues. Rather than a survey of existing systems, it presents some of the existing systems in the context of a discussion of the issues and elements in industrial modular robotics and modular robotics research. The reader is encouraged to look at the references for further discussion on any of the presented topics.

ATRON robot showing robust and reversible execution of self-reconfiguration sequences

Author  Ulrik Pagh Schultz

Video ID : 5

ATRON robot showing robust and reversible execution of self-reconfiguration sequences.

Chapter 10 — Redundant Robots

Stefano Chiaverini, Giuseppe Oriolo and Anthony A. Maciejewski

This chapter focuses on redundancy resolution schemes, i. e., the techniques for exploiting the redundant degrees of freedom in the solution of the inverse kinematics problem. This is obviously an issue of major relevance for motion planning and control purposes.

In particular, task-oriented kinematics and the basic methods for its inversion at the velocity (first-order differential) level are first recalled, with a discussion of the main techniques for handling kinematic singularities. Next, different firstorder methods to solve kinematic redundancy are arranged in two main categories, namely those based on the optimization of suitable performance criteria and those relying on the augmentation of the task space. Redundancy resolution methods at the acceleration (second-order differential) level are then considered in order to take into account dynamics issues, e.g., torque minimization. Conditions under which a cyclic task motion results in a cyclic joint motion are also discussed; this is a major issue when a redundant manipulator is used to execute a repetitive task, e.g., in industrial applications. The use of kinematic redundancy for fault tolerance is analyzed in detail. Suggestions for further reading are given in a final section.

Configuration space control of KUKA Lightweight Robot LWR with EXARM Exoskeleton

Author  Telerobotics Lab

Video ID : 817

This video shows some advanced inverse kinematics mapping that enables the control of a redundant manipulator (KUKA LWR) by means of Cartesian location and geometric correspondence to the human arm. Thereby the null-space of the robot manipulator can be exploited to enable very intuitive operations. Joint limits and singularities are avoided, as well, by optimized mounting of the robot and the hand.

Chapter 72 — Social Robotics

Cynthia Breazeal, Kerstin Dautenhahn and Takayuki Kanda

This chapter surveys some of the principal research trends in Social Robotics and its application to human–robot interaction (HRI). Social (or Sociable) robots are designed to interact with people in a natural, interpersonal manner – often to achieve positive outcomes in diverse applications such as education, health, quality of life, entertainment, communication, and tasks requiring collaborative teamwork. The long-term goal of creating social robots that are competent and capable partners for people is quite a challenging task. They will need to be able to communicate naturally with people using both verbal and nonverbal signals. They will need to engage us not only on a cognitive level, but on an emotional level as well in order to provide effective social and task-related support to people. They will need a wide range of socialcognitive skills and a theory of other minds to understand human behavior, and to be intuitively understood by people. A deep understanding of human intelligence and behavior across multiple dimensions (i. e., cognitive, affective, physical, social, etc.) is necessary in order to design robots that can successfully play a beneficial role in the daily lives of people. This requires a multidisciplinary approach where the design of social robot technologies and methodologies are informed by robotics, artificial intelligence, psychology, neuroscience, human factors, design, anthropology, and more.

Social learning applied to task execution

Author  Cynthia Breazeal

Video ID : 562

This is a video demonstration of the Leonardo robot integrating learning via tutelage, self motivated learning and preference learning to perform a tangram-like task. First the robot learns a policy for how to operate a remote-control box to reveal key shapes needed for the next task, integrating self-motivated exploration with tutelage. The human can shape what the robot learns through a variety of social means. Once Leo has learned a policy, the robot begins the tangram task, which is to make a sailboat figure out of the colored blocks on the virtual workspace. During this interaction, the person has a preference for which block colors to use (yellow and blue), which he conveys through nonverbal means. The robot learns this preference rule from observing these nonverbal cues. During the task, the robot needs blocks of a certain shape and color and which are not readily available on the workspace, but can be accessed by operating the remote-control box to reveal those shapes. Leo evokes those recently learned policies to access those shapes to achieve the goal of making the sailboat figure.

Chapter 9 — Force Control

Luigi Villani and Joris De Schutter

A fundamental requirement for the success of a manipulation task is the capability to handle the physical contact between a robot and the environment. Pure motion control turns out to be inadequate because the unavoidable modeling errors and uncertainties may cause a rise of the contact force, ultimately leading to an unstable behavior during the interaction, especially in the presence of rigid environments. Force feedback and force control becomes mandatory to achieve a robust and versatile behavior of a robotic system in poorly structured environments as well as safe and dependable operation in the presence of humans. This chapter starts from the analysis of indirect force control strategies, conceived to keep the contact forces limited by ensuring a suitable compliant behavior to the end effector, without requiring an accurate model of the environment. Then the problem of interaction tasks modeling is analyzed, considering both the case of a rigid environment and the case of a compliant environment. For the specification of an interaction task, natural constraints set by the task geometry and artificial constraints set by the control strategy are established, with respect to suitable task frames. This formulation is the essential premise to the synthesis of hybrid force/motion control schemes.

COMRADE: Compliant motion research and development environment

Author  Joris De Schutter, Herman Bruyninckx, Hendrik Van Brussel et al.

Video ID : 691

The video collects works on force control developed in the 1970s-1980s and 1990s at the Department of Mechanical Engineering of the Katholieke Universiteit Leuven, Belgium. The tasks were programmed and simulated using the task-frame-based software package COMRADE (compliant motion research and development environment). The video was recorded in the mid-1990s. The main references for the video are: 1. H. Van Brussel, J. Simons: The adaptable compliance concept and its use for automatic assembly by active force feedback accommodations, Proc. 9th Int. Symposium Indust. Robot., Washington (1979), pp.167-181 2. J. Simons, H. Van Brussel, J. De Schutter, J. Verhaert: A self-learning automaton with variable resolution for high precision assembly by industrial robots, IEEE Trans. Autom. Control 27(5), 1109-1113 (1982) 3. J. De Schutter, H. Van Brussel: Compliant robot motion II. A control approach based on external control loops, Int. J. Robot. Res. 7(4), 18-33 (1988) 3.J. De Schutter, H. Van Brussel: Compliant robot motion I. A formalism for specifying compliant motion tasks, Int. J. Robot. Res. 7(4), 3-17 (1988) 4. W. Witvrouw, P. Van de Poel, H. Bruyninckx, J. De Schutter: ROSI: A task specification and simulation tool for force-sensor-based robot control, Proc. 24th Int. Symp. Indust. Robot., Tokyo (1993), pp. 385-392 5. W. Witvrouw, P. Van de Poel, J. De Schutter: COMRADE: Compliant motion research and development environment, Proc. 3rd IFAC/IFIP Workshop on Algorithms and Architecture for Real-Time Control. Ostend (1995), pp. 81-87 6. H. Bruyninckx, S. Dutre, J. De Schutter: Peg-on-hole, a model-based solution to peg and hole alignment, Proc. IEEE Int. Conf. Robot. Autom. (ICRA), Nagoya (1995), pp. 1919-1924 7. M. Nuttin, H. Van Brussel: Learning the peg-into-hole assembly operation with a connectionist reinforcement technique, Comput. Ind. 33(1), 101-109 (1997)

Chapter 41 — Active Manipulation for Perception

Anna Petrovskaya and Kaijen Hsiao

This chapter covers perceptual methods in which manipulation is an integral part of perception. These methods face special challenges due to data sparsity and high costs of sensing actions. However, they can also succeed where other perceptual methods fail, for example, in poor-visibility conditions or for learning the physical properties of a scene.

The chapter focuses on specialized methods that have been developed for object localization, inference, planning, recognition, and modeling in activemanipulation approaches.We concludewith a discussion of real-life applications and directions for future research.

Modeling articulated objects using active manipulation

Author  Juergen Strum

Video ID : 78

The video illustrates a mobile, manipulation robot that interacts with various articulated objects, such as a fridge and a dishwasher, in a kitchen environment. During interaction, the robot learns their kinematic properties such as the rotation axis and the configuration space. Knowing the kinematic model of these objects improves the performance of the robot and enables motion planning. Service robots operating in domestic environments are typically faced with a variety of objects they have to deal with to fulfill their tasks. Some of these objects are articulated such as cabinet doors and drawers, or room and garage doors. The ability to deal with such articulated objects is relevant for service robots, as, for example, they need to open doors when navigating between rooms and to open cabinets to pick up objects in fetch-and-carry applications. We developed a complete probabilistic framework that enables robots to learn the kinematic models of articulated objects from observations of their motion. We combine parametric and nonparametric models consistently and utilize the advantages of both methods. As a result of our approach, a robot can robustly operate articulated objects in unstructured environments. All software is available open-source (including documentation and tutorials) on http://www.ros.org/wiki/articulation.

Chapter 24 — Wheeled Robots

Woojin Chung and Karl Iagnemma

The purpose of this chapter is to introduce, analyze, and compare various wheeled mobile robots (WMRs) and to present several realizations and commonly encountered designs. The mobility of WMR is discussed on the basis of the kinematic constraints resulting from the pure rolling conditions at the contact points between the wheels and the ground. Practical robot structures are classified according to the number of wheels, and features are introduced focusing on commonly adopted designs. Omnimobile robot and articulated robots realizations are described. Wheel–terrain interaction models are presented in order to compute forces at the contact interface. Four possible wheel-terrain interaction cases are shown on the basis of relative stiffness of the wheel and terrain. A suspension system is required to move on uneven surfaces. Structures, dynamics, and important features of commonly used suspensions are explained.

Articulated robot - A robot pushing 3 passive trailers

Author  Woojin Chung

Video ID : 326

An omnidirectional robot pushes three passive trailers along a straight reference trajectory. There are no actuators in the modular passive trailers, and the trailers are connected through free joints. The backward-motion controller of the robot perceives the pose of the last trailer and the joint angles between trailers. Thus, one active robot can control an arbitrary number of trailers.

Chapter 70 — Human-Robot Augmentation

Massimo Bergamasco and Hugh Herr

The development of robotic systems capable of sharing with humans the load of heavy tasks has been one of the primary objectives in robotics research. At present, in order to fulfil such an objective, a strong interest in the robotics community is collected by the so-called wearable robots, a class of robotics systems that are worn and directly controlled by the human operator. Wearable robots, together with powered orthoses that exploit robotic components and control strategies, can represent an immediate resource also for allowing humans to restore manipulation and/or walking functionalities.

The present chapter deals with wearable robotics systems capable of providing different levels of functional and/or operational augmentation to the human beings for specific functions or tasks. Prostheses, powered orthoses, and exoskeletons are described for upper limb, lower limb, and whole body structures. State-of-theart devices together with their functionalities and main components are presented for each class of wearable system. Critical design issues and open research aspects are reported.

L-Exos for upper-limb motor rehabilitation

Author  Massimo Bergamasco

Video ID : 180

The video shows the L-Exos integrated into a virtual environment, which has been specifically developed for the motor rehabilitation of the upper limb.

Chapter 58 — Robotics in Hazardous Applications

James Trevelyan, William R. Hamel and Sung-Chul Kang

Robotics researchers have worked hard to realize a long-awaited vision: machines that can eliminate the need for people to work in hazardous environments. Chapter 60 is framed by the vision of disaster response: search and rescue robots carrying people from burning buildings or tunneling through collapsed rock falls to reach trapped miners. In this chapter we review tangible progress towards robots that perform routine work in places too dangerous for humans. Researchers still have many challenges ahead of them but there has been remarkable progress in some areas. Hazardous environments present special challenges for the accomplishment of desired tasks depending on the nature and magnitude of the hazards. Hazards may be present in the form of radiation, toxic contamination, falling objects or potential explosions. Technology that specialized engineering companies can develop and sell without active help from researchers marks the frontier of commercial feasibility. Just inside this border lie teleoperated robots for explosive ordnance disposal (EOD) and for underwater engineering work. Even with the typical tenfold disadvantage in manipulation performance imposed by the limits of today’s telepresence and teleoperation technology, in terms of human dexterity and speed, robots often can offer a more cost-effective solution. However, most routine applications in hazardous environments still lie far beyond the feasibility frontier. Fire fighting, remediating nuclear contamination, reactor decommissioning, tunneling, underwater engineering, underground mining and clearance of landmines and unexploded ordnance still present many unsolved problems.

HD footage of 1950s atomic power plants - Nuclear reactors

Author  James P. Trevelyan

Video ID : 586

Robot manipulators, mainly remotely controlled and operated by people, have been widely used in the nuclear industry since the 1950s. This video contains archival film footage showing operations using remote manipulators.

Chapter 74 — Learning from Humans

Aude G. Billard, Sylvain Calinon and Rüdiger Dillmann

This chapter surveys the main approaches developed to date to endow robots with the ability to learn from human guidance. The field is best known as robot programming by demonstration, robot learning from/by demonstration, apprenticeship learning and imitation learning. We start with a brief historical overview of the field. We then summarize the various approaches taken to solve four main questions: when, what, who and when to imitate. We emphasize the importance of choosing well the interface and the channels used to convey the demonstrations, with an eye on interfaces providing force control and force feedback. We then review algorithmic approaches to model skills individually and as a compound and algorithms that combine learning from human guidance with reinforcement learning. We close with a look on the use of language to guide teaching and a list of open issues.

Learning compliant motion from human demonstration II

Author  Aude Billard

Video ID : 479

This video shows how the right amount of stiffness at joint level can be taught by human demonstration to allow the robot to strike a match. The robot starts with high stiffness. This leads the robot to break the match. By tapping gently on the joint that requires a decrease in stiffness, the teacher can convey the need for stiffness to decrease. The tapping is recorded using the force sensors available in each joint of the KUKA Light Weight Robot 4++ used for this purpose. Reference: K. Kronander,A. Billard: Learning compliant manipulation through kinesthetic and tactile human-robot interaction, IEEE Trans. Haptics 7(3), 367-380 (2013); doi: 10.1109/TOH.2013.54 .

Chapter 51 — Modeling and Control of Underwater Robots

Gianluca Antonelli, Thor I. Fossen and Dana R. Yoerger

This chapter deals with modeling and control of underwater robots. First, a brief introduction showing the constantly expanding role of marine robotics in oceanic engineering is given; this section also contains some historical backgrounds. Most of the following sections strongly overlap with the corresponding chapters presented in this handbook; hence, to avoid useless repetitions, only those aspects peculiar to the underwater environment are discussed, assuming that the reader is already familiar with concepts such as fault detection systems when discussing the corresponding underwater implementation. Themodeling section is presented by focusing on a coefficient-based approach capturing the most relevant underwater dynamic effects. Two sections dealing with the description of the sensor and the actuating systems are then given. Autonomous underwater vehicles require the implementation of mission control system as well as guidance and control algorithms. Underwater localization is also discussed. Underwater manipulation is then briefly approached. Fault detection and fault tolerance, together with the coordination control of multiple underwater vehicles, conclude the theoretical part of the chapter. Two final sections, reporting some successful applications and discussing future perspectives, conclude the chapter. The reader is referred to Chap. 25 for the design issues.

Adaptive L1 depth control of a ROV

Author  Divine Maalouf, Vincent Creuze, Ahmed Chemori

Video ID : 267

This video illustrates the ability of the L1 adaptive controller to deal with parameter changes (buoyancy) and to reject disturbances (impacts, tether movements, etc.). This controller is implemented on a modified version of the AC-ROV underwater vehicle to perform depth regulation. This work was conducted at LIRMM (University Montpellier 2 / CNRS) in collaboration with Tecnalia France.