View Chapter

Chapter 43 — Telerobotics

Günter Niemeyer, Carsten Preusche, Stefano Stramigioli and Dongjun Lee

In this chapter we present an overview of the field of telerobotics with a focus on control aspects. To acknowledge some of the earliest contributions and motivations the field has provided to robotics in general, we begin with a brief historical perspective and discuss some of the challenging applications. Then, after introducing and classifying the various system architectures and control strategies, we emphasize bilateral control and force feedback. This particular area has seen intense research work in the pursuit of telepresence. We also examine some of the emerging efforts, extending telerobotic concepts to unconventional systems and applications. Finally,we suggest some further reading for a closer engagement with the field.

Bilateral teleoperation of multiple quadrotors with time-varying topology

Author  Antonio Franchi, Paolo Robuffo Giordano

Video ID : 73

This video shows the bilateral teleoperation of a group of four quadrotors UAVs navigating in a cluttered environment. The human operator provides velocity-level, motion commands and receives force-feedback information on the UAV interaction with the environment (e.g., presence of obstacles, external disturbances). The coordination within the group is achieved via a fully decentralized control scheme.

Chapter 46 — Simultaneous Localization and Mapping

Cyrill Stachniss, John J. Leonard and Sebastian Thrun

This chapter provides a comprehensive introduction in to the simultaneous localization and mapping problem, better known in its abbreviated form as SLAM. SLAM addresses the main perception problem of a robot navigating an unknown environment. While navigating the environment, the robot seeks to acquire a map thereof, and at the same time it wishes to localize itself using its map. The use of SLAM problems can be motivated in two different ways: one might be interested in detailed environment models, or one might seek to maintain an accurate sense of a mobile robot’s location. SLAM serves both of these purposes.

We review the three major paradigms from which many published methods for SLAM are derived: (1) the extended Kalman filter (EKF); (2) particle filtering; and (3) graph optimization. We also review recent work in three-dimensional (3-D) SLAM using visual and red green blue distance-sensors (RGB-D), and close with a discussion of open research problems in robotic mapping.

MonoSLAM: Real-time single camera SLAM

Author  Andrew Davison

Video ID : 453

This video describes MonoSLAM, an influential early real-time, single-camera, visual SLAM system, described in Chap. 46.4, Springer Handbook of Robotics, 2nd edn (2016). Reference: A.J. Davison, I. Reid, N. Molton, O. Stasse: MonoSLAM: Real-time single camera SLAM, IEEE Trans. Pattern Anal. Mach. Intel. 29(6), 1052-1067 (2007).

Chapter 80 — Roboethics: Social and Ethical Implications

Gianmarco Veruggio, Fiorella Operto and George Bekey

This chapter outlines the main developments of roboethics 9 years after a worldwide debate on the subject – that is, the applied ethics about ethical, legal, and societal aspects of robotics – opened up. Today, roboethics not only counts several thousands of voices on the Web, but is the issue of important literature relating to almost all robotics applications, and of hundreds of rich projects, workshops, and conferences. This increasing interest and sometimes even fierce debate expresses the perception and need of scientists, manufacturers, and users of professional guidelines and ethical indications about robotics in society.

Some of the issues presented in the chapter are well known to engineers, and less known or unknown to scholars of humanities, and vice versa. However, because the subject is transversal to many disciplines, complex, articulated, and often misrepresented, some of the fundamental concepts relating to ethics in science and technology are recalled and clarified.

A detailed taxonomy of sensitive areas is presented. It is based on a study of several years and referred to by scientists and scholars, the result of which is the Euron Roboethics Roadmap. This taxonomy identifies themost evident/urgent/sensitive ethical problems in the main applicative fields of robotics, leaving more in-depth research to further studies.

Roboethics: Prosthesis

Author  Fiorella Operto

Video ID : 774

Ethical, legal and societal issues in medical robotics. Bionic implants and prosthetics can be used to restore human capabilities and functions. Applications range from human prostheses for locomotion, manipulation, vision, sensing, and other functions: Artificial limbs (legs and arms; artificial internal organs (heart, kidney); artificial senses (eyes, ears...); human augmentation (exoskeletons). This field has an important connection with neuroscience to develop neural interfaces and sensory-motor coordination systems for the integration of these bionic devices with the human body/brain. The very distinction between restoring and enhancing is problematic in some cases insofar as interventions on the human body may have a variety of possibly unpredictable side-effects. Social and economic discrimination towards human beings may arise as a consequence of the enhanced physical and mental properties of super-human cyborgs.

Chapter 27 — Micro-/Nanorobots

Bradley J. Nelson, Lixin Dong and Fumihito Arai

The field of microrobotics covers the robotic manipulation of objects with dimensions in the millimeter to micron range as well as the design and fabrication of autonomous robotic agents that fall within this size range. Nanorobotics is defined in the same way only for dimensions smaller than a micron. With the ability to position and orient objects with micron- and nanometer-scale dimensions, manipulation at each of these scales is a promising way to enable the assembly of micro- and nanosystems, including micro- and nanorobots.

This chapter overviews the state of the art of both micro- and nanorobotics, outlines scaling effects, actuation, and sensing and fabrication at these scales, and focuses on micro- and nanorobotic manipulation systems and their application in microassembly, biotechnology, and the construction and characterization of micro and nanoelectromechanical systems (MEMS/NEMS). Material science, biotechnology, and micro- and nanoelectronics will also benefit from advances in these areas of robotics.

Attogram mass delivery from a carbon nanotube

Author  Lixin Dong

Video ID : 489

This video shows the mass delivery from a carbon nanotube based on nanorobotic manipulation inside a transmission electron microscope. Copper atoms were driven out from the nanotube due to electromigration. A typical mass flow rate is around 1 atom per microsecond. Applications of this phenomenon in nanorobotic spot welding, bubbling of sphere-on-pillar optical antennas, and direct writing of 3-D metallic nanostructures have been demonstrated.

Chapter 53 — Multiple Mobile Robot Systems

Lynne E. Parker, Daniela Rus and Gaurav S. Sukhatme

Within the context of multiple mobile, and networked robot systems, this chapter explores the current state of the art. After a brief introduction, we first examine architectures for multirobot cooperation, exploring the alternative approaches that have been developed. Next, we explore communications issues and their impact on multirobot teams in Sect. 53.3, followed by a discussion of networked mobile robots in Sect. 53.4. Following this we discuss swarm robot systems in Sect. 53.5 and modular robot systems in Sect. 53.6. While swarm and modular systems typically assume large numbers of homogeneous robots, other types of multirobot systems include heterogeneous robots. We therefore next discuss heterogeneity in cooperative robot teams in Sect. 53.7. Once robot teams allow for individual heterogeneity, issues of task allocation become important; Sect. 53.8 therefore discusses common approaches to task allocation. Section 53.9 discusses the challenges of multirobot learning, and some representative approaches. We outline some of the typical application domains which serve as test beds for multirobot systems research in Sect. 53.10. Finally, we conclude in Sect. 53.11 with some summary remarks and suggestions for further reading.

Elements of cooperative behavior in autonomous mobile robots

Author  David Jung, Gordon Cheng, Alexander Zelinsky

Video ID : 200

Two robots are used to demonstrate cooperative behavior with the application of cleaning. One robot sweeps particles along a wall into a pile, and the other robot uses a vacuum to clean up the pile. The robot with the vacuum tracks the location of the sweeping robot to find where the pile of particles has been left.

Chapter 69 — Physical Human-Robot Interaction

Sami Haddadin and Elizabeth Croft

Over the last two decades, the foundations for physical human–robot interaction (pHRI) have evolved from successful developments in mechatronics, control, and planning, leading toward safer lightweight robot designs and interaction control schemes that advance beyond the current capacities of existing high-payload and highprecision position-controlled industrial robots. Based on their ability to sense physical interaction, render compliant behavior along the robot structure, plan motions that respect human preferences, and generate interaction plans for collaboration and coaction with humans, these novel robots have opened up novel and unforeseen application domains, and have advanced the field of human safety in robotics.

This chapter gives an overview on the state of the art in pHRI as of the date of publication. First, the advances in human safety are outlined, addressing topics in human injury analysis in robotics and safety standards for pHRI. Then, the foundations of human-friendly robot design, including the development of lightweight and intrinsically flexible force/torque-controlled machines together with the required perception abilities for interaction are introduced. Subsequently, motionplanning techniques for human environments, including the domains of biomechanically safe, risk-metric-based, human-aware planning are covered. Finally, the rather recent problem of interaction planning is summarized, including the issues of collaborative action planning, the definition of the interaction planning problem, and an introduction to robot reflexes and reactive control architecture for pHRI.

An assistive, decision-and-control architecture for force-sensitive, hand–arm systems driven by human–machine interfaces (MM4)

Author  Jörn Vogel, Sami Haddadin, John D. Simeral, Daniel Bacher , Beata Jarosiewicz, Leigh R. Hochberg, John P. Donoghue, Patrick van der Smagt

Video ID : 622

The video shows a 2-D drinking demonstration using the Braingate2 neural interface. The robot is controlled through a multipriority Cartesian impedance controller and its behavior is extended with collision detection and reflex reaction. Furthermore, virtual workspaces are added to ensure safety. On top of this, a decision-and-control architecture which uses sensory information available from the robotic system to evaluate the current state of task execution, is employed. During the task, the full functionality of skills currently available in a skill library of the robotic systems is used.

Chapter 15 — Robot Learning

Jan Peters, Daniel D. Lee, Jens Kober, Duy Nguyen-Tuong, J. Andrew Bagnell and Stefan Schaal

Machine learning offers to robotics a framework and set of tools for the design of sophisticated and hard-to-engineer behaviors; conversely, the challenges of robotic problems provide both inspiration, impact, and validation for developments in robot learning. The relationship between disciplines has sufficient promise to be likened to that between physics and mathematics. In this chapter, we attempt to strengthen the links between the two research communities by providing a survey of work in robot learning for learning control and behavior generation in robots. We highlight both key challenges in robot learning as well as notable successes. We discuss how contributions tamed the complexity of the domain and study the role of algorithms, representations, and prior knowledge in achieving these successes. As a result, a particular focus of our chapter lies on model learning for control and robot reinforcement learning. We demonstrate how machine learning approaches may be profitably applied, and we note throughout open questions and the tremendous potential for future research.

Learning motor primitives

Author  Jens Kober, Jan Peters

Video ID : 355

The video shows recent success in robot learning for two basic motor tasks, namely, ball-in-a-cup and ball paddling. The video illustrates Section 15.3.5 -- Policy Search, of the Springer Handbook of Robotics, 2nd edn (2016). Reference: J. Kober, J. Peters: Imitation and reinforcement learning - Practical algorithms for motor primitive learning in robotics, IEEE Robot. Autom. Mag. 17(2), 55-62 (2010)

Chapter 23 — Biomimetic Robots

Kyu-Jin Cho and Robert Wood

Biomimetic robot designs attempt to translate biological principles into engineered systems, replacing more classical engineering solutions in order to achieve a function observed in the natural system. This chapter will focus on mechanism design for bio-inspired robots that replicate key principles from nature with novel engineering solutions. The challenges of biomimetic design include developing a deep understanding of the relevant natural system and translating this understanding into engineering design rules. This often entails the development of novel fabrication and actuation to realize the biomimetic design.

This chapter consists of four sections. In Sect. 23.1, we will define what biomimetic design entails, and contrast biomimetic robots with bio-inspired robots. In Sect. 23.2, we will discuss the fundamental components for developing a biomimetic robot. In Sect. 23.3, we will review detailed biomimetic designs that have been developed for canonical robot locomotion behaviors including flapping-wing flight, jumping, crawling, wall climbing, and swimming. In Sect. 23.4, we will discuss the enabling technologies for these biomimetic designs including material and fabrication.

Meshworm

Author  Sangok Seok, Cagdas Onal, Kyu-Jin Cho, Robert Wood, Daniela Rus, Sangbae Kim

Video ID : 288

Researchers built a soft-bodied robot worm that wriggles using artificial muscles and can withstand being beaten with a hammer.

The long-jumping robot Grillo

Author  Umberto Scarfogliero, Cesare Stefanini, Paolo Dario

Video ID : 278

This video shows some of the very first jumping prototypes plus n animation of the simulations made on the desired gait. The robot pictured here is a quadruped, 50 mm robot that weighs about 15 g. Inspired by frog locomotion, a tiny motor loads the springs connected to the hind limbs. Equipped with a 0.2 W DC motor, the robot is configured to achieve a forward speed of 1.5 m/s.

Chapter 21 — Actuators for Soft Robotics

Alin Albu-Schäffer and Antonio Bicchi

Although we do not know as yet how robots of the future will look like exactly, most of us are sure that they will not resemble the heavy, bulky, rigid machines dangerously moving around in old fashioned industrial automation. There is a growing consensus, in the research community as well as in expectations from the public, that robots of the next generation will be physically compliant and adaptable machines, closely interacting with humans and moving safely, smoothly and efficiently - in other terms, robots will be soft.

This chapter discusses the design, modeling and control of actuators for the new generation of soft robots, which can replace conventional actuators in applications where rigidity is not the first and foremost concern in performance. The chapter focuses on the technology, modeling, and control of lumped parameters of soft robotics, that is, systems of discrete, interconnected, and compliant elements. Distributed parameters, snakelike and continuum soft robotics, are presented in Chap. 20, while Chap. 23 discusses in detail the biomimetic motivations that are often behind soft robotics.

AMASC - changing stiffness

Author  Jonathan Hurst et al.

Video ID : 468

AMASC variable stiffness actuator: changing stiffness phase.