View Chapter

Chapter 64 — Rehabilitation and Health Care Robotics

H.F. Machiel Van der Loos, David J. Reinkensmeyer and Eugenio Guglielmelli

The field of rehabilitation robotics considers robotic systems that 1) provide therapy for persons seeking to recover their physical, social, communication, or cognitive function, and/or that 2) assist persons who have a chronic disability to accomplish activities of daily living. This chapter will discuss these two main domains and provide descriptions of the major achievements of the field over its short history and chart out the challenges to come. Specifically, after providing background information on demographics (Sect. 64.1.2) and history (Sect. 64.1.3) of the field, Sect. 64.2 describes physical therapy and exercise training robots, and Sect. 64.3 describes robotic aids for people with disabilities. Section 64.4 then presents recent advances in smart prostheses and orthoses that are related to rehabilitation robotics. Finally, Sect. 64.5 provides an overview of recent work in diagnosis and monitoring for rehabilitation as well as other health-care issues. The reader is referred to Chap. 73 for cognitive rehabilitation robotics and to Chap. 65 for robotic smart home technologies, which are often considered assistive technologies for persons with disabilities. At the conclusion of the present chapter, the reader will be familiar with the history of rehabilitation robotics and its primary accomplishments, and will understand the challenges the field may face in the future as it seeks to improve health care and the well being of persons with disabilities.

BONES and SUE exoskeletons for robotic therapy

Author  Julius Klein, Steve Spencer, James Allington, Marie-Helene Milot, Jim Bobrow, David Reinkensmeyer

Video ID : 498

BONES is a 5-DOF, pneumatic robot developed at the University of California at Irvine for naturalistic arm training after stroke. It incorporates an assistance-as-needed algorithm that adapts in real time to patient errors during game play by developing a computer model of the patient's weakness as a function of workspace location. The controller incorporates an anti-slacking term. SUE is a 2-DOF pneumatic robot for providing wrist assistance. The video shows a person with a stroke using the device to drive a simulated motor cycle through a simulated Death Valley.

Chapter 4 — Mechanism and Actuation

Victor Scheinman, J. Michael McCarthy and Jae-Bok Song

This chapter focuses on the principles that guide the design and construction of robotic systems. The kinematics equations and Jacobian of the robot characterize its range of motion and mechanical advantage, and guide the selection of its size and joint arrangement. The tasks a robot is to perform and the associated precision of its movement determine detailed features such as mechanical structure, transmission, and actuator selection. Here we discuss in detail both the mathematical tools and practical considerations that guide the design of mechanisms and actuation for a robot system.

The following sections (Sect. 4.1) discuss characteristics of the mechanisms and actuation that affect the performance of a robot. Sections 4.2–4.6 discuss the basic features of a robot manipulator and their relationship to the mathematical model that is used to characterize its performance. Sections 4.7 and 4.8 focus on the details of the structure and actuation of the robot and how they combine to yield various types of robots. The final Sect. 4.9 relates these design features to various performance metrics.

Raytheon Sarcos exoskeleton

Author  Sarcos

Video ID : 646

Fig. 4.22b Applications of hydraulic actuators to robot: Sarcos exoskeleton (Raytheon).

Chapter 8 — Motion Control

Wan Kyun Chung, Li-Chen Fu and Torsten Kröger

This chapter will focus on the motion control of robotic rigid manipulators. In other words, this chapter does not treat themotion control ofmobile robots, flexible manipulators, and manipulators with elastic joints. The main challenge in the motion control problem of rigid manipulators is the complexity of their dynamics and uncertainties. The former results from nonlinearity and coupling in the robot manipulators. The latter is twofold: structured and unstructured. Structured uncertainty means imprecise knowledge of the dynamic parameters and will be touched upon in this chapter, whereas unstructured uncertainty results from joint and link flexibility, actuator dynamics, friction, sensor noise, and unknown environment dynamics, and will be treated in other chapters. In this chapter, we begin with an introduction to motion control of robot manipulators from a fundamental viewpoint, followed by a survey and brief review of the relevant advanced materials. Specifically, the dynamic model and useful properties of robot manipulators are recalled in Sect. 8.1. The joint and operational space control approaches, two different viewpoints on control of robot manipulators, are compared in Sect. 8.2. Independent joint control and proportional– integral–derivative (PID) control, widely adopted in the field of industrial robots, are presented in Sects. 8.3 and 8.4, respectively. Tracking control, based on feedback linearization, is introduced in Sect. 8.5. The computed-torque control and its variants are described in Sect. 8.6. Adaptive control is introduced in Sect. 8.7 to solve the problem of structural uncertainty, whereas the optimality and robustness issues are covered in Sect. 8.8. To compute suitable set point signals as input values for these motion controllers, Sect. 8.9 introduces reference trajectory planning concepts. Since most controllers of robotmanipulators are implemented by using microprocessors, the issues of digital implementation are discussed in Sect. 8.10. Finally, learning control, one popular approach to intelligent control, is illustrated in Sect. 8.11.

Virtual whiskers - Highly responsive robot collision avoidance

Author  Thomas Schlegl, Torsten Kröger, Andre Gaschler, Oussama Khatib, Hubert Zangl

Video ID : 758

All mammals but humans use whiskers in order to rapidly acquire information about objects in the vicinity of the head. Collisions of the head and objects can be avoided as the contact point is moved from the body surface to the whiskers. Such a behavior is also highly desirable during many robot tasks such as for human-robot interaction. This video shows the use of novel capacitive proximity sensors so that robots can sense when they approach a human (or an object) and react before they actually collide with it. The sensors are flexible and thin so that they feature skin-like properties and can be attached to various robotic links and joint shapes. In comparison to capacitive proximity sensors, the proposed virtual whiskers offer better sensitivity towards small conductive as well as non-conductive objects. Equipped with the new proximity sensors, a seven-joint robot for human-robot interaction tasks demonstrates the efficiency and responsiveness in this video. Reference: T. Schlegl, T. Kröger, A. Gaschler, O. Khatib, H. Zangl: Virtual whiskers - Highly responsive robot collision avoidance, Proc. IEEE/RSJ Int. Conf. Intel. Robot. Syst. (IROS), Tokyo (2013)

Chapter 25 — Underwater Robots

Hyun-Taek Choi and Junku Yuh

Covering about two-thirds of the earth, the ocean is an enormous system that dominates processes on the Earth and has abundant living and nonliving resources, such as fish and subsea gas and oil. Therefore, it has a great effect on our lives on land, and the importance of the ocean for the future existence of all human beings cannot be overemphasized. However, we have not been able to explore the full depths of the ocean and do not fully understand the complex processes of the ocean. Having said that, underwater robots including remotely operated vehicles (ROVs) and autonomous underwater vehicles (AUVs) have received much attention since they can be an effective tool to explore the ocean and efficiently utilize the ocean resources. This chapter focuses on design issues of underwater robots including major subsystems such as mechanical systems, power sources, actuators and sensors, computers and communications, software architecture, and manipulators while Chap. 51 covers modeling and control of underwater robots.

Preliminary experimental result of an AUV yShark2

Author  Hyun-Taek Choi

Video ID : 799

This video shows preliminary experimental result of an underwater robot named yShark2 developed by KRISO (Korea Research Institute of Ships and Ocean Engineering). yShark is a test platform and is designed especially for testing the intelligent algorithms we are working on. For this, it has AHRS, IMU, DVL, two cameras, an LED light, a depth sensor, eight-channel ranging sonar as basic navigation sensors, and we can install an imaging sonar DIDSON for obtaining pictures as shown in Fig. 25.2. More importantly, its system software architecture is implemented using the structure explained in Fig. 25.7. The motion in this video is controlled by autonomous algorithms.

Chapter 58 — Robotics in Hazardous Applications

James Trevelyan, William R. Hamel and Sung-Chul Kang

Robotics researchers have worked hard to realize a long-awaited vision: machines that can eliminate the need for people to work in hazardous environments. Chapter 60 is framed by the vision of disaster response: search and rescue robots carrying people from burning buildings or tunneling through collapsed rock falls to reach trapped miners. In this chapter we review tangible progress towards robots that perform routine work in places too dangerous for humans. Researchers still have many challenges ahead of them but there has been remarkable progress in some areas. Hazardous environments present special challenges for the accomplishment of desired tasks depending on the nature and magnitude of the hazards. Hazards may be present in the form of radiation, toxic contamination, falling objects or potential explosions. Technology that specialized engineering companies can develop and sell without active help from researchers marks the frontier of commercial feasibility. Just inside this border lie teleoperated robots for explosive ordnance disposal (EOD) and for underwater engineering work. Even with the typical tenfold disadvantage in manipulation performance imposed by the limits of today’s telepresence and teleoperation technology, in terms of human dexterity and speed, robots often can offer a more cost-effective solution. However, most routine applications in hazardous environments still lie far beyond the feasibility frontier. Fire fighting, remediating nuclear contamination, reactor decommissioning, tunneling, underwater engineering, underground mining and clearance of landmines and unexploded ordnance still present many unsolved problems.

UNMACA: Demining Afghanistan

Author  James P. Trevelyan

Video ID : 571

This is a high-quality video made partly with the aim of seeking funds to help complete demining projects in Afghanistan. This video has been included because researchers can see plenty of examples of realistic field conditions under which demining is being done in Afghanistan. It is essential for researchers to have an accurate appreciation of the real field conditions before considering expensive research projects. There are plenty of opportunities to see manual mine clearance. Current-generation demining machines don't work here because of the very hard and rocky ground. There is an interesting segment showing the Bamyan site. The sentiments expressed by deminers are genuine, in my experience. I have met many similarly dedicated Afghan deminers, and they are selected for their dedication, attitude to nation-building, courage, and conscientious work ethic. They are justly proud of the work they do, and their uniforms and equipment set them apart from most other Afghans and give them a real sense of respect. Note that winter rains and summer storms wash mud over mines, encasing them in what later turns to hard, cement-like soil. It is hard physical work demanding sensitive hands, care, and attention to detail. For more information see: http://school.mech.uwa.edu.au/~jamest/demining/countries/afghan/minefields-afghan.html

Chapter 23 — Biomimetic Robots

Kyu-Jin Cho and Robert Wood

Biomimetic robot designs attempt to translate biological principles into engineered systems, replacing more classical engineering solutions in order to achieve a function observed in the natural system. This chapter will focus on mechanism design for bio-inspired robots that replicate key principles from nature with novel engineering solutions. The challenges of biomimetic design include developing a deep understanding of the relevant natural system and translating this understanding into engineering design rules. This often entails the development of novel fabrication and actuation to realize the biomimetic design.

This chapter consists of four sections. In Sect. 23.1, we will define what biomimetic design entails, and contrast biomimetic robots with bio-inspired robots. In Sect. 23.2, we will discuss the fundamental components for developing a biomimetic robot. In Sect. 23.3, we will review detailed biomimetic designs that have been developed for canonical robot locomotion behaviors including flapping-wing flight, jumping, crawling, wall climbing, and swimming. In Sect. 23.4, we will discuss the enabling technologies for these biomimetic designs including material and fabrication.

Meshworm

Author  Sangok Seok, Cagdas Onal, Kyu-Jin Cho, Robert Wood, Daniela Rus, Sangbae Kim

Video ID : 288

Researchers built a soft-bodied robot worm that wriggles using artificial muscles and can withstand being beaten with a hammer.

Chapter 70 — Human-Robot Augmentation

Massimo Bergamasco and Hugh Herr

The development of robotic systems capable of sharing with humans the load of heavy tasks has been one of the primary objectives in robotics research. At present, in order to fulfil such an objective, a strong interest in the robotics community is collected by the so-called wearable robots, a class of robotics systems that are worn and directly controlled by the human operator. Wearable robots, together with powered orthoses that exploit robotic components and control strategies, can represent an immediate resource also for allowing humans to restore manipulation and/or walking functionalities.

The present chapter deals with wearable robotics systems capable of providing different levels of functional and/or operational augmentation to the human beings for specific functions or tasks. Prostheses, powered orthoses, and exoskeletons are described for upper limb, lower limb, and whole body structures. State-of-theart devices together with their functionalities and main components are presented for each class of wearable system. Critical design issues and open research aspects are reported.

Arm-Exos

Author  Massimo Bergamasco

Video ID : 148

The video details the Arm-Exos and, in particular, its capability for tracking the operator's motions and for rendering the contact forces in a simple, demonstrative, virtual environment.

Chapter 6 — Model Identification

John Hollerbach, Wisama Khalil and Maxime Gautier

This chapter discusses how to determine the kinematic parameters and the inertial parameters of robot manipulators. Both instances of model identification are cast into a common framework of least-squares parameter estimation, and are shown to have common numerical issues relating to the identifiability of parameters, adequacy of the measurement sets, and numerical robustness. These discussions are generic to any parameter estimation problem, and can be applied in other contexts.

For kinematic calibration, the main aim is to identify the geometric Denavit–Hartenberg (DH) parameters, although joint-based parameters relating to the sensing and transmission elements can also be identified. Endpoint sensing or endpoint constraints can provide equivalent calibration equations. By casting all calibration methods as closed-loop calibration, the calibration index categorizes methods in terms of how many equations per pose are generated.

Inertial parameters may be estimated through the execution of a trajectory while sensing one or more components of force/torque at a joint. Load estimation of a handheld object is simplest because of full mobility and full wrist force-torque sensing. For link inertial parameter estimation, restricted mobility of links nearer the base as well as sensing only the joint torque means that not all inertial parameters can be identified. Those that can be identified are those that affect joint torque, although they may appear in complicated linear combinations.

Calibration of ABB's IRB 120 industrial robot

Author  Ilian Bonev

Video ID : 422

The video depicts the process for the geometric calibration of the 6 DOF IRB 120. The calibration is based on the measurement of the position and the orientation of a tool using the laser tracking system from FARO. The video shows in sequence the steps in the acquisition of various configurations which can then be be employed using an algorithm similar to that of Sect. 6.2.

Chapter 36 — Motion for Manipulation Tasks

James Kuffner and Jing Xiao

This chapter serves as an introduction to Part D by giving an overview of motion generation and control strategies in the context of robotic manipulation tasks. Automatic control ranging from the abstract, high-level task specification down to fine-grained feedback at the task interface are considered. Some of the important issues include modeling of the interfaces between the robot and the environment at the different time scales of motion and incorporating sensing and feedback. Manipulation planning is introduced as an extension to the basic motion planning problem, which can be modeled as a hybrid system of continuous configuration spaces arising from the act of grasping and moving parts in the environment. The important example of assembly motion is discussed through the analysis of contact states and compliant motion control. Finally, methods aimed at integrating global planning with state feedback control are summarized.

Robotic assembly of emergency-stop buttons

Author  Andreas Stolt et al.

Video ID : 358

The video presents a framework for dual-arm robotic assembly of stop buttons utilizing force/torque sensing under the fixture and force control.

Chapter 21 — Actuators for Soft Robotics

Alin Albu-Schäffer and Antonio Bicchi

Although we do not know as yet how robots of the future will look like exactly, most of us are sure that they will not resemble the heavy, bulky, rigid machines dangerously moving around in old fashioned industrial automation. There is a growing consensus, in the research community as well as in expectations from the public, that robots of the next generation will be physically compliant and adaptable machines, closely interacting with humans and moving safely, smoothly and efficiently - in other terms, robots will be soft.

This chapter discusses the design, modeling and control of actuators for the new generation of soft robots, which can replace conventional actuators in applications where rigidity is not the first and foremost concern in performance. The chapter focuses on the technology, modeling, and control of lumped parameters of soft robotics, that is, systems of discrete, interconnected, and compliant elements. Distributed parameters, snakelike and continuum soft robotics, are presented in Chap. 20, while Chap. 23 discusses in detail the biomimetic motivations that are often behind soft robotics.

Active damping control on the DLR Hand Arm System

Author  Florian Petit, Alin Albu-Schäffer

Video ID : 548

The effectivness of active damping control is shown in a writing task performed by the DLR Hand Arm System.