View Chapter

Chapter 64 — Rehabilitation and Health Care Robotics

H.F. Machiel Van der Loos, David J. Reinkensmeyer and Eugenio Guglielmelli

The field of rehabilitation robotics considers robotic systems that 1) provide therapy for persons seeking to recover their physical, social, communication, or cognitive function, and/or that 2) assist persons who have a chronic disability to accomplish activities of daily living. This chapter will discuss these two main domains and provide descriptions of the major achievements of the field over its short history and chart out the challenges to come. Specifically, after providing background information on demographics (Sect. 64.1.2) and history (Sect. 64.1.3) of the field, Sect. 64.2 describes physical therapy and exercise training robots, and Sect. 64.3 describes robotic aids for people with disabilities. Section 64.4 then presents recent advances in smart prostheses and orthoses that are related to rehabilitation robotics. Finally, Sect. 64.5 provides an overview of recent work in diagnosis and monitoring for rehabilitation as well as other health-care issues. The reader is referred to Chap. 73 for cognitive rehabilitation robotics and to Chap. 65 for robotic smart home technologies, which are often considered assistive technologies for persons with disabilities. At the conclusion of the present chapter, the reader will be familiar with the history of rehabilitation robotics and its primary accomplishments, and will understand the challenges the field may face in the future as it seeks to improve health care and the well being of persons with disabilities.

The MIME rtehabilitation-therapy robot

Author  Peter Lum,Machiel Van der Loos, Chuck Burgar

Video ID : 495

The 6-DOF MIME robot assisting the left arm in unilateral and bimanual modes. In the unilateral mode, the robot provides end-point tunnel guidance toward the target. In bimanual mode, movement of the right arm is measured with a 6-DOF digitizer, and the robot assists the left arm in performing mirror-image movements.

Chapter 20 — Snake-Like and Continuum Robots

Ian D. Walker, Howie Choset and Gregory S. Chirikjian

This chapter provides an overview of the state of the art of snake-like (backbones comprised of many small links) and continuum (continuous backbone) robots. The history of each of these classes of robot is reviewed, focusing on key hardware developments. A review of the existing theory and algorithms for kinematics for both types of robot is presented, followed by a summary ofmodeling of locomotion for snake-like and continuum mechanisms.

Active compliant insertion

Author  Nabil Simaan

Video ID : 244

Shows rapid deployment of a continuum robot inside a tube using force sensing at the backbones and a generalization of the compliant motion controller initially presented in [1]. This experiment is associated with [2] which is not published. The algorithms have been validated successfully on two cadavers as reported in Hamlyn 2013 paper and in a TBME paper currently under review [1] R. E. Goldman, A. Bajo, N. Simaan: Compliant motion control for continuum robots with intrinsic actuation sensing, Proc. IEEE Int. Conf. Robot. Autom. (ICRA), Shanghai (2011), pp. 1126-1132; [2] R. E. Goldman, A. Bajo, N. Simaan: Compliant motion control for multi-segment continuum robots with actuation force sensing, IEEE Trans. Robot. (2013), submitted

Chapter 40 — Mobility and Manipulation

Oliver Brock, Jaeheung Park and Marc Toussaint

Mobile manipulation requires the integration of methodologies from all aspects of robotics. Instead of tackling each aspect in isolation,mobilemanipulation research exploits their interdependence to solve challenging problems. As a result, novel views of long-standing problems emerge. In this chapter, we present these emerging views in the areas of grasping, control, motion generation, learning, and perception. All of these areas must address the shared challenges of high-dimensionality, uncertainty, and task variability. The section on grasping and manipulation describes a trend towards actively leveraging contact and physical and dynamic interactions between hand, object, and environment. Research in control addresses the challenges of appropriately coupling mobility and manipulation. The field of motion generation increasingly blurs the boundaries between control and planning, leading to task-consistent motion in high-dimensional configuration spaces, even in dynamic and partially unknown environments. A key challenge of learning formobilemanipulation consists of identifying the appropriate priors, and we survey recent learning approaches to perception, grasping, motion, and manipulation. Finally, a discussion of promising methods in perception shows how concepts and methods from navigation and active perception are applied.

DLR's Agile Justin plays catch with Rollin' Justin

Author  DLR

Video ID : 661

DLR has developed a new robot named Agile Justin that is capable of tossing a baseball. This seemed like a natural complement to Rollin' Justin's ability to catch a baseball, so they teamed them up for a friendly game of "catch."

A day in the life of Romeo and Juliet (mobile manipulators)

Author  Oussama Khatib

Video ID : 776

Arm/vehicle coordination, dynamically decoupled self motion control, useful compliant motion tasks, cooperative compliant motion and internal force control.

Chapter 69 — Physical Human-Robot Interaction

Sami Haddadin and Elizabeth Croft

Over the last two decades, the foundations for physical human–robot interaction (pHRI) have evolved from successful developments in mechatronics, control, and planning, leading toward safer lightweight robot designs and interaction control schemes that advance beyond the current capacities of existing high-payload and highprecision position-controlled industrial robots. Based on their ability to sense physical interaction, render compliant behavior along the robot structure, plan motions that respect human preferences, and generate interaction plans for collaboration and coaction with humans, these novel robots have opened up novel and unforeseen application domains, and have advanced the field of human safety in robotics.

This chapter gives an overview on the state of the art in pHRI as of the date of publication. First, the advances in human safety are outlined, addressing topics in human injury analysis in robotics and safety standards for pHRI. Then, the foundations of human-friendly robot design, including the development of lightweight and intrinsically flexible force/torque-controlled machines together with the required perception abilities for interaction are introduced. Subsequently, motionplanning techniques for human environments, including the domains of biomechanically safe, risk-metric-based, human-aware planning are covered. Finally, the rather recent problem of interaction planning is summarized, including the issues of collaborative action planning, the definition of the interaction planning problem, and an introduction to robot reflexes and reactive control architecture for pHRI.

Twendy-One demo

Author  WASEDA University, Sugano Laboratory

Video ID : 623

The video shows the Twendy-One robot from the WASEDA University Sugano Laboratory performing several tasks in personal care including sitting-up motion support, transferring the care-receipient safely onto a wheelchair, or giving support during breakfast preparation. The acoustic communication between human and robot is extended by the possibility of haptic instructions.

Chapter 23 — Biomimetic Robots

Kyu-Jin Cho and Robert Wood

Biomimetic robot designs attempt to translate biological principles into engineered systems, replacing more classical engineering solutions in order to achieve a function observed in the natural system. This chapter will focus on mechanism design for bio-inspired robots that replicate key principles from nature with novel engineering solutions. The challenges of biomimetic design include developing a deep understanding of the relevant natural system and translating this understanding into engineering design rules. This often entails the development of novel fabrication and actuation to realize the biomimetic design.

This chapter consists of four sections. In Sect. 23.1, we will define what biomimetic design entails, and contrast biomimetic robots with bio-inspired robots. In Sect. 23.2, we will discuss the fundamental components for developing a biomimetic robot. In Sect. 23.3, we will review detailed biomimetic designs that have been developed for canonical robot locomotion behaviors including flapping-wing flight, jumping, crawling, wall climbing, and swimming. In Sect. 23.4, we will discuss the enabling technologies for these biomimetic designs including material and fabrication.

Omegabot : Inchworm-inspired robot climbing

Author  Je-Sung Koh, Kyu-Jin Cho

Video ID : 290

This robot is an inchworm-inspired robot using a composite structure and a SMA spring actuator. It has gripper and steering joints so that it can climb on rough surfaces and steer as well.

Chapter 51 — Modeling and Control of Underwater Robots

Gianluca Antonelli, Thor I. Fossen and Dana R. Yoerger

This chapter deals with modeling and control of underwater robots. First, a brief introduction showing the constantly expanding role of marine robotics in oceanic engineering is given; this section also contains some historical backgrounds. Most of the following sections strongly overlap with the corresponding chapters presented in this handbook; hence, to avoid useless repetitions, only those aspects peculiar to the underwater environment are discussed, assuming that the reader is already familiar with concepts such as fault detection systems when discussing the corresponding underwater implementation. Themodeling section is presented by focusing on a coefficient-based approach capturing the most relevant underwater dynamic effects. Two sections dealing with the description of the sensor and the actuating systems are then given. Autonomous underwater vehicles require the implementation of mission control system as well as guidance and control algorithms. Underwater localization is also discussed. Underwater manipulation is then briefly approached. Fault detection and fault tolerance, together with the coordination control of multiple underwater vehicles, conclude the theoretical part of the chapter. Two final sections, reporting some successful applications and discussing future perspectives, conclude the chapter. The reader is referred to Chap. 25 for the design issues.

Saturation-based, nonlinear, depth-and-yaw control of an underwater vehicle

Author  Eduardo Campos-Mercado, Ahmed Chemori, Vincent Creuze, Jorge Torres-Munoz, Rogelio Lozano

Video ID : 268

This video demonstrates the robustness of a saturation-based, nonlinear controller for underwater vehicles. The performance of yaw and depth control of the L2ROV prototype is maintained, even when the buoyancy and the damping are changed. This work has been conducted by the LIRMM (University Montpellier 2, France) and the LAFMIA (CINVESTAV Mexico), in collaboration with Tecnalia France Foundation. This work has been supported by the French-Mexican PCP program and by the Region Languedoc-Roussillon.

Chapter 13 — Behavior-Based Systems

François Michaud and Monica Nicolescu

Nature is filled with examples of autonomous creatures capable of dealing with the diversity, unpredictability, and rapidly changing conditions of the real world. Such creatures must make decisions and take actions based on incomplete perception, time constraints, limited knowledge about the world, cognition, reasoning and physical capabilities, in uncontrolled conditions and with very limited cues about the intent of others. Consequently, one way of evaluating intelligence is based on the creature’s ability to make the most of what it has available to handle the complexities of the real world. The main objective of this chapter is to explain behavior-based systems and their use in autonomous control problems and applications. The chapter is organized as follows. Section 13.1 overviews robot control, introducing behavior-based systems in relation to other established approaches to robot control. Section 13.2 follows by outlining the basic principles of behavior-based systems that make them distinct from other types of robot control architectures. The concept of basis behaviors, the means of modularizing behavior-based systems, is presented in Sect. 13.3. Section 13.4 describes how behaviors are used as building blocks for creating representations for use by behavior-based systems, enabling the robot to reason about the world and about itself in that world. Section 13.5 presents several different classes of learning methods for behavior-based systems, validated on single-robot and multirobot systems. Section 13.6 provides an overview of various robotics problems and application domains that have successfully been addressed or are currently being studied with behavior-based control. Finally, Sect. 13.7 concludes the chapter.

Experience-based learning of high-level task representations: Demonstration (3)

Author  Monica Nicolescu

Video ID : 32

This is a video recorded in early 2000s, showing a Pioneer robot learning to traverse "gates" and move objects from a source place to a destination - the human demonstration stage. The robot execution stage is also shown in a related video in this chapter. Reference: M. Nicolescu, M.J. Mataric: Learning and interacting in human-robot domains, IEEE Trans. Syst. Man Cybernet. A31(5), 419-430 (2001)

Chapter 32 — 3-D Vision for Navigation and Grasping

Danica Kragic and Kostas Daniilidis

In this chapter, we describe algorithms for three-dimensional (3-D) vision that help robots accomplish navigation and grasping. To model cameras, we start with the basics of perspective projection and distortion due to lenses. This projection from a 3-D world to a two-dimensional (2-D) image can be inverted only by using information from the world or multiple 2-D views. If we know the 3-D model of an object or the location of 3-D landmarks, we can solve the pose estimation problem from one view. When two views are available, we can compute the 3-D motion and triangulate to reconstruct the world up to a scale factor. When multiple views are given either as sparse viewpoints or a continuous incoming video, then the robot path can be computer and point tracks can yield a sparse 3-D representation of the world. In order to grasp objects, we can estimate 3-D pose of the end effector or 3-D coordinates of the graspable points on the object.

LIBVISO: Visual odometry for intelligent vehicles

Author  Andreas Geiger

Video ID : 122

This video demonstrates a visual-odometry algorithm on the performance of the vehicle Annieway (VW Passat). Visual odometry is the estimation of a video camera's 3-D motion and orientation, which is purely based on stereo vision in this case. The blue trajectory is the motion estimated by visual odometry, and the red trajectory is the ground truth by a high-precision OXTS RT3000 GPS+IMU system. The software is available from http://www.cvlibs.net/

Chapter 43 — Telerobotics

Günter Niemeyer, Carsten Preusche, Stefano Stramigioli and Dongjun Lee

In this chapter we present an overview of the field of telerobotics with a focus on control aspects. To acknowledge some of the earliest contributions and motivations the field has provided to robotics in general, we begin with a brief historical perspective and discuss some of the challenging applications. Then, after introducing and classifying the various system architectures and control strategies, we emphasize bilateral control and force feedback. This particular area has seen intense research work in the pursuit of telepresence. We also examine some of the emerging efforts, extending telerobotic concepts to unconventional systems and applications. Finally,we suggest some further reading for a closer engagement with the field.

Tele-existence, master-slave system for remote manipulation

Author  Susumu Tachi, Hirohiko Arai, Taro Maeda

Video ID : 297

A tele-existence, master-slave system for remote manipulation experiments is designed and developed, and an evaluation experiment of a tele-existence master-slave system is conducted. Presented at ICRA 1991.