View Chapter

Chapter 43 — Telerobotics

Günter Niemeyer, Carsten Preusche, Stefano Stramigioli and Dongjun Lee

In this chapter we present an overview of the field of telerobotics with a focus on control aspects. To acknowledge some of the earliest contributions and motivations the field has provided to robotics in general, we begin with a brief historical perspective and discuss some of the challenging applications. Then, after introducing and classifying the various system architectures and control strategies, we emphasize bilateral control and force feedback. This particular area has seen intense research work in the pursuit of telepresence. We also examine some of the emerging efforts, extending telerobotic concepts to unconventional systems and applications. Finally,we suggest some further reading for a closer engagement with the field.

Passive teleoperation of a nonlinear telerobot with tool-dynamics rendering

Author  Dongjun Lee

Video ID : 74

This is a video showing the passive teleoperation of nonlinear master-slave robots using passive decomposition, which enables master-slave coordination, apparent inertia scaling, and tool-dynamics rendering.

Chapter 62 — Intelligent Vehicles

Alberto Broggi, Alex Zelinsky, Ümit Özgüner and Christian Laugier

This chapter describes the emerging robotics application field of intelligent vehicles – motor vehicles that have autonomous functions and capabilities. The chapter is organized as follows. Section 62.1 provides a motivation for why the development of intelligent vehicles is important, a brief history of the field, and the potential benefits of the technology. Section 62.2 describes the technologies that enable intelligent vehicles to sense vehicle, environment, and driver state, work with digital maps and satellite navigation, and communicate with intelligent transportation infrastructure. Section 62.3 describes the challenges and solutions associated with road scene understanding – a key capability for all intelligent vehicles. Section 62.4 describes advanced driver assistance systems, which use the robotics and sensing technologies described earlier to create new safety and convenience systems for motor vehicles, such as collision avoidance, lane keeping, and parking assistance. Section 62.5 describes driver monitoring technologies that are being developed to mitigate driver fatigue, inattention, and impairment. Section 62.6 describes fully autonomous intelligent vehicles systems that have been developed and deployed. The chapter is concluded in Sect. 62.7 with a discussion of future prospects, while Sect. 62.8 provides references to further reading and additional resources.

Pedestrian detection

Author  Alberto Broggi, Alexander Zelinsky, Ümit Ozgüner, Christian Laugier

Video ID : 839

This video demonstrates pedestrian detection using stereo vision to achieve robustness.

Driver fatigue and inattention

Author  Alberto Broggi, Alexander Zelinsky, Ümit Ozgüner, Christian Laugier

Video ID : 840

This video demonstrates real-time driver inattention and distraction, including that caused fatigue. The system uses a monocular vision system and infrared pods to achieve robust operation in all lighting conditions.

Chapter 43 — Telerobotics

Günter Niemeyer, Carsten Preusche, Stefano Stramigioli and Dongjun Lee

In this chapter we present an overview of the field of telerobotics with a focus on control aspects. To acknowledge some of the earliest contributions and motivations the field has provided to robotics in general, we begin with a brief historical perspective and discuss some of the challenging applications. Then, after introducing and classifying the various system architectures and control strategies, we emphasize bilateral control and force feedback. This particular area has seen intense research work in the pursuit of telepresence. We also examine some of the emerging efforts, extending telerobotic concepts to unconventional systems and applications. Finally,we suggest some further reading for a closer engagement with the field.

Semi-autonomous teleoperation of multiple UAVs: Tumbling over an obstacle

Author  Antonio Franchi, Paolo Robuffo Giordano

Video ID : 72

This video shows the bilateral teleoperation of a group of four quadrotor UAVs navigating in a cluttered environment. The human operator provides velocity-level motion commands and receives force-feedback information on the UAV interaction with the environment (e.g., presence of obstacles and external disturbances).

Chapter 36 — Motion for Manipulation Tasks

James Kuffner and Jing Xiao

This chapter serves as an introduction to Part D by giving an overview of motion generation and control strategies in the context of robotic manipulation tasks. Automatic control ranging from the abstract, high-level task specification down to fine-grained feedback at the task interface are considered. Some of the important issues include modeling of the interfaces between the robot and the environment at the different time scales of motion and incorporating sensing and feedback. Manipulation planning is introduced as an extension to the basic motion planning problem, which can be modeled as a hybrid system of continuous configuration spaces arising from the act of grasping and moving parts in the environment. The important example of assembly motion is discussed through the analysis of contact states and compliant motion control. Finally, methods aimed at integrating global planning with state feedback control are summarized.

Autonomous continuum grasping

Author  Jing Xiao et al.

Video ID : 357

The video shows three example tasks: (1) autonomous grasping and lifting operation of an object, (2) autonomous obstacle avoidance operation, and (3) autonomous operation of grasping and lifting an object while avoiding another object. Note that the grasped object was lifted about 2 inches off the table.

Chapter 80 — Roboethics: Social and Ethical Implications

Gianmarco Veruggio, Fiorella Operto and George Bekey

This chapter outlines the main developments of roboethics 9 years after a worldwide debate on the subject – that is, the applied ethics about ethical, legal, and societal aspects of robotics – opened up. Today, roboethics not only counts several thousands of voices on the Web, but is the issue of important literature relating to almost all robotics applications, and of hundreds of rich projects, workshops, and conferences. This increasing interest and sometimes even fierce debate expresses the perception and need of scientists, manufacturers, and users of professional guidelines and ethical indications about robotics in society.

Some of the issues presented in the chapter are well known to engineers, and less known or unknown to scholars of humanities, and vice versa. However, because the subject is transversal to many disciplines, complex, articulated, and often misrepresented, some of the fundamental concepts relating to ethics in science and technology are recalled and clarified.

A detailed taxonomy of sensitive areas is presented. It is based on a study of several years and referred to by scientists and scholars, the result of which is the Euron Roboethics Roadmap. This taxonomy identifies themost evident/urgent/sensitive ethical problems in the main applicative fields of robotics, leaving more in-depth research to further studies.

Roboethics: Military robotics

Author  Fiorella Operto

Video ID : 775

Ethical, legal and societal issues in military robotics. The so-called field of military robotics comprises all the devices resulting from the development of the traditional systems by robotics technology: Integrated defense systems; and A.I. systems for intelligence and surveillance controlling weapons and aircraft capabilities. Unmanned ground vehicles (UGVs), or autonomous tanks: Armored vehicles carrying weapons and/or tactical payloads, intelligent bombs and missiles. UAVs (unmanned aerial vehicles): also referred to as autonomous flying vehicles (AFVs) or drones, unmanned spy planes and remotely piloted bombers. ASV (autonomous surface vessels) and patrol boats. AUVs (autonomous underwater vehicles): Intelligent torpedoes and autonomous submarines. In this field, the main problems could arise from: inadequate management of the unstructured complexity of a hostile scenario; the unpredictability of machine behavior; the increased risk of starting a video-game-like war, due to the decreased perception of its deadly effects; unpredictable side-effects on civilian populations; human-in-control hierarchy and robot’s transparency; psychological issues of humans in robotized environments (mixed teams); accountability and responsibility gap; the assignment of liability for misbehaviors or crimes. Collateral damages: Despite the increasing success of this technology, military hierarchies feel concerned about the potential dangers. Drones can accidentally fall and possibly damage humans and objects. Daily news report about unintended injury or death of innocent non-combatants (usually known as “collateral damage”) from war theaters. Potential friendly-fire casualties in crowded battlefield or due to enemy’s tracking/hijacking.

Chapter 43 — Telerobotics

Günter Niemeyer, Carsten Preusche, Stefano Stramigioli and Dongjun Lee

In this chapter we present an overview of the field of telerobotics with a focus on control aspects. To acknowledge some of the earliest contributions and motivations the field has provided to robotics in general, we begin with a brief historical perspective and discuss some of the challenging applications. Then, after introducing and classifying the various system architectures and control strategies, we emphasize bilateral control and force feedback. This particular area has seen intense research work in the pursuit of telepresence. We also examine some of the emerging efforts, extending telerobotic concepts to unconventional systems and applications. Finally,we suggest some further reading for a closer engagement with the field.

Bilateral teleoperation of multiple quadrotors with time-varying topology

Author  Antonio Franchi, Paolo Robuffo Giordano

Video ID : 73

This video shows the bilateral teleoperation of a group of four quadrotors UAVs navigating in a cluttered environment. The human operator provides velocity-level, motion commands and receives force-feedback information on the UAV interaction with the environment (e.g., presence of obstacles, external disturbances). The coordination within the group is achieved via a fully decentralized control scheme.

Chapter 26 — Flying Robots

Stefan Leutenegger, Christoph Hürzeler, Amanda K. Stowers, Kostas Alexis, Markus W. Achtelik, David Lentink, Paul Y. Oh and Roland Siegwart

Unmanned aircraft systems (UASs) have drawn increasing attention recently, owing to advancements in related research, technology, and applications. While having been deployed successfully in military scenarios for decades, civil use cases have lately been tackled by the robotics research community.

This chapter overviews the core elements of this highly interdisciplinary field; the reader is guided through the design process of aerial robots for various applications starting with a qualitative characterization of different types of UAS. Design and modeling are closely related, forming a typically iterative process of drafting and analyzing the related properties. Therefore, we overview aerodynamics and dynamics, as well as their application to fixed-wing, rotary-wing, and flapping-wing UAS, including related analytical tools and practical guidelines. Respecting use-case-specific requirements and core autonomous robot demands, we finally provide guidelines to related system integration challenges.

Structural, inspection-path planning via iterative, viewpoint resampling with application to aerial robotics

Author  Kostas Alexis

Video ID : 604

This video presents experimental results relevant for the ICRA 2015 paper: A. Bircher, K. Alexis, M. Burri, P. Oettershagen, S. Omari, T. Mantel, R. Siegwart: Structural inspection path planning via iterative viewpoint resampling with application to aerial robotics, IEEE Int. Conf. Robot. Autom. (ICRA), Seattle (2015), pp. 6423 - 6430; doi: 10.1109/ICRA.2015.7140101

Chapter 21 — Actuators for Soft Robotics

Alin Albu-Schäffer and Antonio Bicchi

Although we do not know as yet how robots of the future will look like exactly, most of us are sure that they will not resemble the heavy, bulky, rigid machines dangerously moving around in old fashioned industrial automation. There is a growing consensus, in the research community as well as in expectations from the public, that robots of the next generation will be physically compliant and adaptable machines, closely interacting with humans and moving safely, smoothly and efficiently - in other terms, robots will be soft.

This chapter discusses the design, modeling and control of actuators for the new generation of soft robots, which can replace conventional actuators in applications where rigidity is not the first and foremost concern in performance. The chapter focuses on the technology, modeling, and control of lumped parameters of soft robotics, that is, systems of discrete, interconnected, and compliant elements. Distributed parameters, snakelike and continuum soft robotics, are presented in Chap. 20, while Chap. 23 discusses in detail the biomimetic motivations that are often behind soft robotics.

DLR Hand Arm System: Two-arm manipulation

Author  Alin Albu-Schäffer, Thomas Bahls, Maxime Chalon, Markus Grebenstein, Oliver Eiberger, Werner Friedl, Hannes Höppner, Dominic Lakatos, Daniel Leidner, Florian Petit, Jens Reinecke, Sebastian Wolf, Tilo Wüsthoff

Video ID : 550

The DLR Hand Arm System demonstrates a grasping task with a handover of an object.

Chapter 20 — Snake-Like and Continuum Robots

Ian D. Walker, Howie Choset and Gregory S. Chirikjian

This chapter provides an overview of the state of the art of snake-like (backbones comprised of many small links) and continuum (continuous backbone) robots. The history of each of these classes of robot is reviewed, focusing on key hardware developments. A review of the existing theory and algorithms for kinematics for both types of robot is presented, followed by a summary ofmodeling of locomotion for snake-like and continuum mechanisms.

Stenting deployment system

Author  Nabil Simaan

Video ID : 248

A 3-DOF continuum robot for intraocular dexterity and stent placement. The video shows a stent being deployed in a choroallantoic chick membrane which represents the vasculature of the retina [1, 2]. Note that [1] reports an algorithm for assisted telemanipulation and force sensing at the tip of a guide wire using a rapid interpolation map by elliptic integrals. References: [1] W. Wei, N. Simaan: Modeling, force sensing, and control of flexible cannulas for microstent delivery, J. Dyn. Syst. Meas. Control 134(4), 041004 (2012); [2] W. Wei, C. Popplewell, H. Fine, S. Chang, N. Simaan: Enabling technology for micro-vascular stenting in ophthalmic surgery, ASME J. Med. Dev. 4(2), 014503-01 - 014503-06 (2010)