View Chapter

Chapter 59 — Robotics in Mining

Joshua A. Marshall, Adrian Bonchis, Eduardo Nebot and Steven Scheding

This chapter presents an overview of the state of the art in mining robotics, from surface to underground applications, and beyond. Mining is the practice of extracting resources for utilitarian purposes. Today, the international business of mining is a heavily mechanized industry that exploits the use of large diesel and electric equipment. These machines must operate in harsh, dynamic, and uncertain environments such as, for example, in the high arctic, in extreme desert climates, and in deep underground tunnel networks where it can be very hot and humid. Applications of robotics in mining are broad and include robotic dozing, excavation, and haulage, robotic mapping and surveying, as well as robotic drilling and explosives handling. This chapter describes how many of these applications involve unique technical challenges for field roboticists. However, there are compelling reasons to advance the discipline of mining robotics, which include not only a desire on the part of miners to improve productivity, safety, and lower costs, but also out of a need to meet product demands by accessing orebodies situated in increasingly challenging conditions.

Autonomous loading of fragmented rock

Author  Joshua Marshall

Video ID : 718

This video shows autonomous loading of fragmented rock, first on a 1-t capacity Kubota loader at Kingston, Canada, followed by an implementation on a 14-t capacity Atlas Copco ST14 LHD in an underground mine at Kvarntorp, Sweden. The algorithm used in these demonstrations is based on force-feedback sensed in the loader cylinder pressures and utilizes an admittance control structure.

Chapter 21 — Actuators for Soft Robotics

Alin Albu-Schäffer and Antonio Bicchi

Although we do not know as yet how robots of the future will look like exactly, most of us are sure that they will not resemble the heavy, bulky, rigid machines dangerously moving around in old fashioned industrial automation. There is a growing consensus, in the research community as well as in expectations from the public, that robots of the next generation will be physically compliant and adaptable machines, closely interacting with humans and moving safely, smoothly and efficiently - in other terms, robots will be soft.

This chapter discusses the design, modeling and control of actuators for the new generation of soft robots, which can replace conventional actuators in applications where rigidity is not the first and foremost concern in performance. The chapter focuses on the technology, modeling, and control of lumped parameters of soft robotics, that is, systems of discrete, interconnected, and compliant elements. Distributed parameters, snakelike and continuum soft robotics, are presented in Chap. 20, while Chap. 23 discusses in detail the biomimetic motivations that are often behind soft robotics.

DLR Hand Arm System smashed with baseball bat

Author  Sebastian Wolf, Oliver Eiberger, Gerd Hirzinger

Video ID : 461

The DLR Hand Arm System is equipped with variable stiffness actuators (VSA). In this demonstration of robustness, the arm resists the impact of a baseball bat.

Chapter 6 — Model Identification

John Hollerbach, Wisama Khalil and Maxime Gautier

This chapter discusses how to determine the kinematic parameters and the inertial parameters of robot manipulators. Both instances of model identification are cast into a common framework of least-squares parameter estimation, and are shown to have common numerical issues relating to the identifiability of parameters, adequacy of the measurement sets, and numerical robustness. These discussions are generic to any parameter estimation problem, and can be applied in other contexts.

For kinematic calibration, the main aim is to identify the geometric Denavit–Hartenberg (DH) parameters, although joint-based parameters relating to the sensing and transmission elements can also be identified. Endpoint sensing or endpoint constraints can provide equivalent calibration equations. By casting all calibration methods as closed-loop calibration, the calibration index categorizes methods in terms of how many equations per pose are generated.

Inertial parameters may be estimated through the execution of a trajectory while sensing one or more components of force/torque at a joint. Load estimation of a handheld object is simplest because of full mobility and full wrist force-torque sensing. For link inertial parameter estimation, restricted mobility of links nearer the base as well as sensing only the joint torque means that not all inertial parameters can be identified. Those that can be identified are those that affect joint torque, although they may appear in complicated linear combinations.

Dynamic identification of a parallel robot : Trajectory without load

Author  Maxime Gautier

Video ID : 488

This video shows a trajectory without payload used to identify the dynamic parameters and joint drive gains of a parallel prototype robot Orthoglyde. Details and results are given in the paper : S. Briot, M. Gautier: Global identification of joint drive gains and dynamic parameters of parallel robots, Multibody Syst. Dyn. 33(1), 3-26 (2015); doi 10.1007/s11044-013-9403-6

Chapter 74 — Learning from Humans

Aude G. Billard, Sylvain Calinon and Rüdiger Dillmann

This chapter surveys the main approaches developed to date to endow robots with the ability to learn from human guidance. The field is best known as robot programming by demonstration, robot learning from/by demonstration, apprenticeship learning and imitation learning. We start with a brief historical overview of the field. We then summarize the various approaches taken to solve four main questions: when, what, who and when to imitate. We emphasize the importance of choosing well the interface and the channels used to convey the demonstrations, with an eye on interfaces providing force control and force feedback. We then review algorithmic approaches to model skills individually and as a compound and algorithms that combine learning from human guidance with reinforcement learning. We close with a look on the use of language to guide teaching and a list of open issues.

Policy refinement after demonstration

Author  Sylvain Calinon, Petar Kormushev, Darwin Caldwell

Video ID : 105

Use of stochastic optimization in the policy-parameters space to refine a skill initially learned from demonstration. Reference: S. Calinon, P. Kormushev, D.G. Caldwell: Compliant skills acquisition and multi-optima policy search with EM-based reinforcement learning, Robot. Auton. Syst. 61(4), 369–379 (2013); URL: http://vimeo.com/13387420

Chapter 63 — Medical Robotics and Computer-Integrated Surgery

Russell H. Taylor, Arianna Menciassi, Gabor Fichtinger, Paolo Fiorini and Paolo Dario

The growth of medical robotics since the mid- 1980s has been striking. From a few initial efforts in stereotactic brain surgery, orthopaedics, endoscopic surgery, microsurgery, and other areas, the field has expanded to include commercially marketed, clinically deployed systems, and a robust and exponentially expanding research community. This chapter will discuss some major themes and illustrate them with examples from current and past research. Further reading providing a more comprehensive review of this rapidly expanding field is suggested in Sect. 63.4.

Medical robotsmay be classified in many ways: by manipulator design (e.g., kinematics, actuation); by level of autonomy (e.g., preprogrammed versus teleoperation versus constrained cooperative control), by targeted anatomy or technique (e.g., cardiac, intravascular, percutaneous, laparoscopic, microsurgical); or intended operating environment (e.g., in-scanner, conventional operating room). In this chapter, we have chosen to focus on the role of medical robots within the context of larger computer-integrated systems including presurgical planning, intraoperative execution, and postoperative assessment and follow-up.

First, we introduce basic concepts of computerintegrated surgery, discuss critical factors affecting the eventual deployment and acceptance of medical robots, and introduce the basic system paradigms of surgical computer-assisted planning, execution, monitoring, and assessment (surgical CAD/CAM) and surgical assistance. In subsequent sections, we provide an overview of the technology ofmedical robot systems and discuss examples of our basic system paradigms, with brief additional discussion topics of remote telesurgery and robotic surgical simulators. We conclude with some thoughts on future research directions and provide suggested further reading.

A micro-robot operating inside an eye

Author  ETHZ, Zurich, Switzerland - Prof. Bradley Nelson

Video ID : 835

A micro-robot with remote magnetic propulsion for surgery inside an eye.

Chapter 66 — Robotics Competitions and Challenges

Daniele Nardi, Jonathan Roberts, Manuela Veloso and Luke Fletcher

This chapter explores the use of competitions to accelerate robotics research and promote science, technology, engineering, and mathematics (STEM) education. We argue that the field of robotics is particularly well suited to innovation through competitions. Two broad categories of robot competition are used to frame the discussion: human-inspired competitions and task-based challenges. Human-inspired robot competitions, of which the majority are sports contests, quickly move through platform development to focus on problemsolving and test through game play. Taskbased challenges attempt to attract participants by presenting a high aim for a robotic system. The contest can then be tuned, as required, to maintain motivation and ensure that the progress is made. Three case studies of robot competitions are presented, namely robot soccer, the UAV challenge, and the DARPA (Defense Advanced Research Projects Agency) grand challenges. The case studies serve to explore from the point of view of organizers and participants, the benefits and limitations of competitions, and what makes a good robot competition.

This chapter ends with some concluding remarks on the natural convergence of humaninspired competitions and task-based challenges in the promotion of STEM education, research, and vocations.

Multirobot teamwork in the CMDragons RoboCup SSL team

Author  Manuela Veloso

Video ID : 387

In this video, we can see the coordination and passing strategy as an example of the play of the RoboCup small-size league (SSL), in this case, the CMDragons team from Veloso and her students, at Carnegie Mellon University. The RoboCup SSL has an overhead camera connected to an offboard computer which plans and commands the robots: The perception, planning, and actuation cycle is fully autonomous.

Chapter 21 — Actuators for Soft Robotics

Alin Albu-Schäffer and Antonio Bicchi

Although we do not know as yet how robots of the future will look like exactly, most of us are sure that they will not resemble the heavy, bulky, rigid machines dangerously moving around in old fashioned industrial automation. There is a growing consensus, in the research community as well as in expectations from the public, that robots of the next generation will be physically compliant and adaptable machines, closely interacting with humans and moving safely, smoothly and efficiently - in other terms, robots will be soft.

This chapter discusses the design, modeling and control of actuators for the new generation of soft robots, which can replace conventional actuators in applications where rigidity is not the first and foremost concern in performance. The chapter focuses on the technology, modeling, and control of lumped parameters of soft robotics, that is, systems of discrete, interconnected, and compliant elements. Distributed parameters, snakelike and continuum soft robotics, are presented in Chap. 20, while Chap. 23 discusses in detail the biomimetic motivations that are often behind soft robotics.

VSA-Cube arm: Drawing on a wavy surface (selective stiffness)

Author  Centro di Ricerca "E. Piaggio"

Video ID : 474

A 3-DOF arm, built with VSA-cube units, performing a circle on a wavy surface with a proper (selective) stiffness preset.

Chapter 64 — Rehabilitation and Health Care Robotics

H.F. Machiel Van der Loos, David J. Reinkensmeyer and Eugenio Guglielmelli

The field of rehabilitation robotics considers robotic systems that 1) provide therapy for persons seeking to recover their physical, social, communication, or cognitive function, and/or that 2) assist persons who have a chronic disability to accomplish activities of daily living. This chapter will discuss these two main domains and provide descriptions of the major achievements of the field over its short history and chart out the challenges to come. Specifically, after providing background information on demographics (Sect. 64.1.2) and history (Sect. 64.1.3) of the field, Sect. 64.2 describes physical therapy and exercise training robots, and Sect. 64.3 describes robotic aids for people with disabilities. Section 64.4 then presents recent advances in smart prostheses and orthoses that are related to rehabilitation robotics. Finally, Sect. 64.5 provides an overview of recent work in diagnosis and monitoring for rehabilitation as well as other health-care issues. The reader is referred to Chap. 73 for cognitive rehabilitation robotics and to Chap. 65 for robotic smart home technologies, which are often considered assistive technologies for persons with disabilities. At the conclusion of the present chapter, the reader will be familiar with the history of rehabilitation robotics and its primary accomplishments, and will understand the challenges the field may face in the future as it seeks to improve health care and the well being of persons with disabilities.

Indego

Author  Parker Hannifin

Video ID : 510

Indego is a powered orthosis developed by Vanderbilt University and commercialized by Parker Hannifin, which is designed to help individuals with paralysis to walk.

Chapter 23 — Biomimetic Robots

Kyu-Jin Cho and Robert Wood

Biomimetic robot designs attempt to translate biological principles into engineered systems, replacing more classical engineering solutions in order to achieve a function observed in the natural system. This chapter will focus on mechanism design for bio-inspired robots that replicate key principles from nature with novel engineering solutions. The challenges of biomimetic design include developing a deep understanding of the relevant natural system and translating this understanding into engineering design rules. This often entails the development of novel fabrication and actuation to realize the biomimetic design.

This chapter consists of four sections. In Sect. 23.1, we will define what biomimetic design entails, and contrast biomimetic robots with bio-inspired robots. In Sect. 23.2, we will discuss the fundamental components for developing a biomimetic robot. In Sect. 23.3, we will review detailed biomimetic designs that have been developed for canonical robot locomotion behaviors including flapping-wing flight, jumping, crawling, wall climbing, and swimming. In Sect. 23.4, we will discuss the enabling technologies for these biomimetic designs including material and fabrication.

Pop-up fabrication of the Harvard Monolithic Bee (Mobee)

Author  Robert J. Wood

Video ID : 398

The Harvard Monolithic Bee is a millimeter-scale flapping winged robotic insect produced using printed-circuit MEMS (PC-MEMS) techniques. This video describes the manufacturing process, including pop-up book inspired assembly. This work was funded by the NSF, the Wyss Institute, and the ASEE. Music: D-Song by Bonobo.

Chapter 69 — Physical Human-Robot Interaction

Sami Haddadin and Elizabeth Croft

Over the last two decades, the foundations for physical human–robot interaction (pHRI) have evolved from successful developments in mechatronics, control, and planning, leading toward safer lightweight robot designs and interaction control schemes that advance beyond the current capacities of existing high-payload and highprecision position-controlled industrial robots. Based on their ability to sense physical interaction, render compliant behavior along the robot structure, plan motions that respect human preferences, and generate interaction plans for collaboration and coaction with humans, these novel robots have opened up novel and unforeseen application domains, and have advanced the field of human safety in robotics.

This chapter gives an overview on the state of the art in pHRI as of the date of publication. First, the advances in human safety are outlined, addressing topics in human injury analysis in robotics and safety standards for pHRI. Then, the foundations of human-friendly robot design, including the development of lightweight and intrinsically flexible force/torque-controlled machines together with the required perception abilities for interaction are introduced. Subsequently, motionplanning techniques for human environments, including the domains of biomechanically safe, risk-metric-based, human-aware planning are covered. Finally, the rather recent problem of interaction planning is summarized, including the issues of collaborative action planning, the definition of the interaction planning problem, and an introduction to robot reflexes and reactive control architecture for pHRI.

An assistive, decision-and-control architecture for force-sensitive, hand-arm systems driven via human-machine interfaces (MM1)

Author  Jörn Vogel, Sami Haddadin, John D. Simeral, Daniel Bacher , Beata Jarosiewicz, Leigh R. Hochberg, John P. Donoghue, Patrick van der Smagt

Video ID : 619

The video shows the "grasp" and "release" skills demonstrated in a 1-D control task using the Braingate2 neural-interface system. The robot is controlled through a multipriority Cartesian impedance controller and its behavior is extended with collision detection and reflex reaction. Furthermore, virtual workspaces are added to ensure safety. On top of this, a decision-and-control architecture, which uses sensory information available from the robotic system to evaluate the current state of task execution, is employed.