View Chapter

Chapter 72 — Social Robotics

Cynthia Breazeal, Kerstin Dautenhahn and Takayuki Kanda

This chapter surveys some of the principal research trends in Social Robotics and its application to human–robot interaction (HRI). Social (or Sociable) robots are designed to interact with people in a natural, interpersonal manner – often to achieve positive outcomes in diverse applications such as education, health, quality of life, entertainment, communication, and tasks requiring collaborative teamwork. The long-term goal of creating social robots that are competent and capable partners for people is quite a challenging task. They will need to be able to communicate naturally with people using both verbal and nonverbal signals. They will need to engage us not only on a cognitive level, but on an emotional level as well in order to provide effective social and task-related support to people. They will need a wide range of socialcognitive skills and a theory of other minds to understand human behavior, and to be intuitively understood by people. A deep understanding of human intelligence and behavior across multiple dimensions (i. e., cognitive, affective, physical, social, etc.) is necessary in order to design robots that can successfully play a beneficial role in the daily lives of people. This requires a multidisciplinary approach where the design of social robot technologies and methodologies are informed by robotics, artificial intelligence, psychology, neuroscience, human factors, design, anthropology, and more.

Human-robot teaming in a search-and-retrieve task

Author  Cynthia Breazeal

Video ID : 555

This video shows an example from a human participant study examining the role of nonverbal social signals on human-robot teamwork for a complex search-and-retrieve task. In a controlled experiment, we examined the role of backchanneling and task complexity on team functioning and perceptions of the robots’ engagement and competence. Seventy three participants interacted with autonomous humanoid robots as part of a human-robot team: One participant, one confederate (a remote operator controlling an aerial robot), and three robots (2 mobile humanoids and an aerial robot). We found that, when robots used backchanneling, team functioning improved and the robots were seen as more engaged.

Chapter 56 — Robotics in Agriculture and Forestry

Marcel Bergerman, John Billingsley, John Reid and Eldert van Henten

Robotics for agriculture and forestry (A&F) represents the ultimate application of one of our society’s latest and most advanced innovations to its most ancient and important industries. Over the course of history, mechanization and automation increased crop output several orders of magnitude, enabling a geometric growth in population and an increase in quality of life across the globe. Rapid population growth and rising incomes in developing countries, however, require ever larger amounts of A&F output. This chapter addresses robotics for A&F in the form of case studies where robotics is being successfully applied to solve well-identified problems. With respect to plant crops, the focus is on the in-field or in-farm tasks necessary to guarantee a quality crop and, generally speaking, end at harvest time. In the livestock domain, the focus is on breeding and nurturing, exploiting, harvesting, and slaughtering and processing. The chapter is organized in four main sections. The first one explains the scope, in particular, what aspects of robotics for A&F are dealt with in the chapter. The second one discusses the challenges and opportunities associated with the application of robotics to A&F. The third section is the core of the chapter, presenting twenty case studies that showcase (mostly) mature applications of robotics in various agricultural and forestry domains. The case studies are not meant to be comprehensive but instead to give the reader a general overview of how robotics has been applied to A&F in the last 10 years. The fourth section concludes the chapter with a discussion on specific improvements to current technology and paths to commercialization.

A mini, unmanned, aerial system for remote sensing in agriculture

Author  Joao Valente, Julian Colorado, Claudio Rossi, Alex Martinez, Jaime Del Cerro, Antonio Barrientos

Video ID : 307

This video shows a mini-aerial robot employed for aerial sampling in precision agriculture (PA). Issues such as field partitioning, path planning, and robust flight control are addressed, together with experimental results collected during outdoor testing.

Chapter 68 — Human Motion Reconstruction

Katsu Yamane and Wataru Takano

This chapter presents a set of techniques for reconstructing and understanding human motions measured using current motion capture technologies. We first review modeling and computation techniques for obtaining motion and force information from human motion data (Sect. 68.2). Here we show that kinematics and dynamics algorithms for articulated rigid bodies can be applied to human motion data processing, with help from models based on knowledge in anatomy and physiology. We then describe methods for analyzing human motions so that robots can segment and categorize different behaviors and use them as the basis for human motion understanding and communication (Sect. 68.3). These methods are based on statistical techniques widely used in linguistics. The two fields share the common goal of converting continuous and noisy signal to discrete symbols, and therefore it is natural to apply similar techniques. Finally, we introduce some application examples of human motion and models ranging from simulated human control to humanoid robot motion synthesis.

Human motion mapped to a humanoid robot

Author  Katsu Yamane

Video ID : 765

This video shows an example of a humanoid robot controlled using human motion. The robot is equipped with a tracking controller and a balance controller.

Chapter 14 — AI Reasoning Methods for Robotics

Michael Beetz, Raja Chatila, Joachim Hertzberg and Federico Pecora

Artificial intelligence (AI) reasoning technology involving, e.g., inference, planning, and learning, has a track record with a healthy number of successful applications. So can it be used as a toolbox of methods for autonomous mobile robots? Not necessarily, as reasoning on a mobile robot about its dynamic, partially known environment may differ substantially from that in knowledge-based pure software systems, where most of the named successes have been registered. Moreover, recent knowledge about the robot’s environment cannot be given a priori, but needs to be updated from sensor data, involving challenging problems of symbol grounding and knowledge base change. This chapter sketches the main roboticsrelevant topics of symbol-based AI reasoning. Basic methods of knowledge representation and inference are described in general, covering both logicand probability-based approaches. The chapter first gives a motivation by example, to what extent symbolic reasoning has the potential of helping robots perform in the first place. Then (Sect. 14.2), we sketch the landscape of representation languages available for the endeavor. After that (Sect. 14.3), we present approaches and results for several types of practical, robotics-related reasoning tasks, with an emphasis on temporal and spatial reasoning. Plan-based robot control is described in some more detail in Sect. 14.4. Section 14.5 concludes.

From knowledge grounding to dialogue processing

Author  Séverin Lemaignan, Rachid Alami

Video ID : 705

This 2012 video documents the entire process of perspective-aware knowledge acquisition, knowledge representation and storage, and dialogue understanding. It demonstrates several examples of the natural interaction of a human with a PR2 robot, including speech recognition and action execution.

Chapter 61 — Robot Surveillance and Security

Wendell H. Chun and Nikolaos Papanikolopoulos

This chapter introduces the foundation for surveillance and security robots for multiple military and civilian applications. The key environmental domains are mobile robots for ground, aerial, surface water, and underwater applications. Surveillance literallymeans to watch fromabove,while surveillance robots are used to monitor the behavior, activities, and other changing information that are gathered for the general purpose of managing, directing, or protecting one’s assets or position. In a practical sense, the term surveillance is taken to mean the act of observation from a distance, and security robots are commonly used to protect and safeguard a location, some valuable assets, or personal against danger, damage, loss, and crime. Surveillance is a proactive operation,while security robots are a defensive operation. The construction of each type of robot is similar in nature with amobility component, sensor payload, communication system, and an operator control station.

After introducing the major robot components, this chapter focuses on the various applications. More specifically, Sect. 61.3 discusses the enabling technologies of mobile robot navigation, various payload sensors used for surveillance or security applications, target detection and tracking algorithms, and the operator’s robot control console for human–machine interface (HMI). Section 61.4 presents selected research activities relevant to surveillance and security, including automatic data processing of the payload sensors, automaticmonitoring of human activities, facial recognition, and collaborative automatic target recognition (ATR). Finally, Sect. 61.5 discusses future directions in robot surveillance and security, giving some conclusions and followed by references.

MDARS I: Indoor security robot

Author  Bart Everett

Video ID : 680

The mobile detection-assessment response system (MDARS) is a joint Army-Navy effort to field interior and exterior autonomous platforms for security and inventory-assessment functions at DOD warehouses and storage sites. The MDARS system, which provides an automated, robotic-security capability for storage yards, petroleum tank farms, rail yards, and arsenals, includes multiple supervised-autonomous platforms equipped with intrusion detection, barrier assessment, and inventory assessment subsystems commanded from an integrated control station.

Chapter 23 — Biomimetic Robots

Kyu-Jin Cho and Robert Wood

Biomimetic robot designs attempt to translate biological principles into engineered systems, replacing more classical engineering solutions in order to achieve a function observed in the natural system. This chapter will focus on mechanism design for bio-inspired robots that replicate key principles from nature with novel engineering solutions. The challenges of biomimetic design include developing a deep understanding of the relevant natural system and translating this understanding into engineering design rules. This often entails the development of novel fabrication and actuation to realize the biomimetic design.

This chapter consists of four sections. In Sect. 23.1, we will define what biomimetic design entails, and contrast biomimetic robots with bio-inspired robots. In Sect. 23.2, we will discuss the fundamental components for developing a biomimetic robot. In Sect. 23.3, we will review detailed biomimetic designs that have been developed for canonical robot locomotion behaviors including flapping-wing flight, jumping, crawling, wall climbing, and swimming. In Sect. 23.4, we will discuss the enabling technologies for these biomimetic designs including material and fabrication.

Smooth vertical surface climbing with directional adhesion

Author  Sangbae Kim, Mark R. Cutkosky

Video ID : 389

Stickybot is a bioinspired robot that climbs smooth vertical surfaces such as those made of glass, plastic, and ceramic tile at 4 cm/s. The robot employs several design principles adapted from the gecko, including a hierarchy of compliant structures and directional adhesion. At the finest scale, the undersides of Stickybot’s toes are covered with arrays of small, angled polymer stalks.

Chapter 21 — Actuators for Soft Robotics

Alin Albu-Schäffer and Antonio Bicchi

Although we do not know as yet how robots of the future will look like exactly, most of us are sure that they will not resemble the heavy, bulky, rigid machines dangerously moving around in old fashioned industrial automation. There is a growing consensus, in the research community as well as in expectations from the public, that robots of the next generation will be physically compliant and adaptable machines, closely interacting with humans and moving safely, smoothly and efficiently - in other terms, robots will be soft.

This chapter discusses the design, modeling and control of actuators for the new generation of soft robots, which can replace conventional actuators in applications where rigidity is not the first and foremost concern in performance. The chapter focuses on the technology, modeling, and control of lumped parameters of soft robotics, that is, systems of discrete, interconnected, and compliant elements. Distributed parameters, snakelike and continuum soft robotics, are presented in Chap. 20, while Chap. 23 discusses in detail the biomimetic motivations that are often behind soft robotics.

CompAct™ robotics technology

Author  Istituto Italiano di Tecnologia (IIT)

Video ID : 471

Brief video showing CompAct™ actuation units and arm, demonstrating the effects of its core variable damping (VPDA) technology. Key features of these units include: 1. intrinsic safety (lightweight and elastic transmission) meant for safe human-robot collaboration; 2. precision, thanks to the variable damping transmission, protected by international patents; 3. ease of use (no need for experts to program it, easy to reprogram, flexible to use).

Chapter 20 — Snake-Like and Continuum Robots

Ian D. Walker, Howie Choset and Gregory S. Chirikjian

This chapter provides an overview of the state of the art of snake-like (backbones comprised of many small links) and continuum (continuous backbone) robots. The history of each of these classes of robot is reviewed, focusing on key hardware developments. A review of the existing theory and algorithms for kinematics for both types of robot is presented, followed by a summary ofmodeling of locomotion for snake-like and continuum mechanisms.

Field experiments with the OctArm continuum manipulator

Author  Ian Walker

Video ID : 157

Video overview of the OctArm continuum manipulator's applications and features.

Chapter 47 — Motion Planning and Obstacle Avoidance

Javier Minguez, Florant Lamiraux and Jean-Paul Laumond

This chapter describes motion planning and obstacle avoidance for mobile robots. We will see how the two areas do not share the same modeling background. From the very beginning of motion planning, research has been dominated by computer sciences. Researchers aim at devising well-grounded algorithms with well-understood completeness and exactness properties.

The challenge of this chapter is to present both nonholonomic motion planning (Sects. 47.1–47.6) and obstacle avoidance (Sects. 47.7–47.10) issues. Section 47.11 reviews recent successful approaches that tend to embrace the whole problemofmotion planning and motion control. These approaches benefit from both nonholonomic motion planning and obstacle avoidance methods.

Mobile-robot, autonomous navigation in Gracia district, Barcelona

Author  Joan Perez

Video ID : 712

This video demonstrates a fully autonomous navigation solution for mobile robots operating in urban pedestrian areas. Path planning is performed by a graph search on a discretized grid of the workspace. Obstacle avoidance is performed by a slightly modified version of the dynamic-window approach.

Chapter 21 — Actuators for Soft Robotics

Alin Albu-Schäffer and Antonio Bicchi

Although we do not know as yet how robots of the future will look like exactly, most of us are sure that they will not resemble the heavy, bulky, rigid machines dangerously moving around in old fashioned industrial automation. There is a growing consensus, in the research community as well as in expectations from the public, that robots of the next generation will be physically compliant and adaptable machines, closely interacting with humans and moving safely, smoothly and efficiently - in other terms, robots will be soft.

This chapter discusses the design, modeling and control of actuators for the new generation of soft robots, which can replace conventional actuators in applications where rigidity is not the first and foremost concern in performance. The chapter focuses on the technology, modeling, and control of lumped parameters of soft robotics, that is, systems of discrete, interconnected, and compliant elements. Distributed parameters, snakelike and continuum soft robotics, are presented in Chap. 20, while Chap. 23 discusses in detail the biomimetic motivations that are often behind soft robotics.

VSA-CubeBot - Peg in hole

Author  Centro di Ricerca "E. Piaggio"

Video ID : 460

VSA-CubeBot performing an assembly task. It consists in inserting a chamfered 29.5 mm diameter cylindrical peg in a 30 mm diameter round hole. The task is performed using only inexpensive position sensors, without force measurements, by exploiting the intrinsic mechanical elasticity of the variable impedance actuation units.