View Chapter

Chapter 20 — Snake-Like and Continuum Robots

Ian D. Walker, Howie Choset and Gregory S. Chirikjian

This chapter provides an overview of the state of the art of snake-like (backbones comprised of many small links) and continuum (continuous backbone) robots. The history of each of these classes of robot is reviewed, focusing on key hardware developments. A review of the existing theory and algorithms for kinematics for both types of robot is presented, followed by a summary ofmodeling of locomotion for snake-like and continuum mechanisms.

IREP tagging spikes

Author  Nabil Simaan

Video ID : 246

This video shows telemanipulation of the IREP (insertible robotic effectors platform). The IREP is a system having 21 controllable axes including two 7-DOF dexterous arms, 3-DOF camera head, an insertion stage, and two grippers [1]. Reference: [1] A. Bajo, R. E. Goldman, L. Wang, D. Fowler, N. Simaan: Integration and preliminary evaluation of an insertable robotic effectors platform for single port access surgery, Proc. 2012 IEEE Int. Conf. Robot. Autom. (ICRA), St. Paul (2012), pp. 3381-3387

Chapter 69 — Physical Human-Robot Interaction

Sami Haddadin and Elizabeth Croft

Over the last two decades, the foundations for physical human–robot interaction (pHRI) have evolved from successful developments in mechatronics, control, and planning, leading toward safer lightweight robot designs and interaction control schemes that advance beyond the current capacities of existing high-payload and highprecision position-controlled industrial robots. Based on their ability to sense physical interaction, render compliant behavior along the robot structure, plan motions that respect human preferences, and generate interaction plans for collaboration and coaction with humans, these novel robots have opened up novel and unforeseen application domains, and have advanced the field of human safety in robotics.

This chapter gives an overview on the state of the art in pHRI as of the date of publication. First, the advances in human safety are outlined, addressing topics in human injury analysis in robotics and safety standards for pHRI. Then, the foundations of human-friendly robot design, including the development of lightweight and intrinsically flexible force/torque-controlled machines together with the required perception abilities for interaction are introduced. Subsequently, motionplanning techniques for human environments, including the domains of biomechanically safe, risk-metric-based, human-aware planning are covered. Finally, the rather recent problem of interaction planning is summarized, including the issues of collaborative action planning, the definition of the interaction planning problem, and an introduction to robot reflexes and reactive control architecture for pHRI.

Twendy-One demo

Author  WASEDA University, Sugano Laboratory

Video ID : 623

The video shows the Twendy-One robot from the WASEDA University Sugano Laboratory performing several tasks in personal care including sitting-up motion support, transferring the care-receipient safely onto a wheelchair, or giving support during breakfast preparation. The acoustic communication between human and robot is extended by the possibility of haptic instructions.

Chapter 19 — Robot Hands

Claudio Melchiorri and Makoto Kaneko

Multifingered robot hands have a potential capability for achieving dexterous manipulation of objects by using rolling and sliding motions. This chapter addresses design, actuation, sensing and control of multifingered robot hands. From the design viewpoint, they have a strong constraint in actuator implementation due to the space limitation in each joint. After briefly introducing the overview of anthropomorphic end-effector and its dexterity in Sect. 19.1, various approaches for actuation are provided with their advantages and disadvantages in Sect. 19.2. The key classification is (1) remote actuation or build-in actuation and (2) the relationship between the number of joints and the number of actuator. In Sect. 19.3, actuators and sensors used for multifingered hands are described. In Sect. 19.4, modeling and control are introduced by considering both dynamic effects and friction. Applications and trends are given in Sect. 19.5. Finally, this chapter is closed with conclusions and further reading.

The Dexmart Hand

Author  Claudio Melchiorri

Video ID : 767

Grasp and manipulation tasks executed by the Dexmart Hand, an anthropomorphic robot hand developed within an European research activity. Detailed aspects of the "twisted-spring" actuation principle are demonstrated.

Chapter 21 — Actuators for Soft Robotics

Alin Albu-Schäffer and Antonio Bicchi

Although we do not know as yet how robots of the future will look like exactly, most of us are sure that they will not resemble the heavy, bulky, rigid machines dangerously moving around in old fashioned industrial automation. There is a growing consensus, in the research community as well as in expectations from the public, that robots of the next generation will be physically compliant and adaptable machines, closely interacting with humans and moving safely, smoothly and efficiently - in other terms, robots will be soft.

This chapter discusses the design, modeling and control of actuators for the new generation of soft robots, which can replace conventional actuators in applications where rigidity is not the first and foremost concern in performance. The chapter focuses on the technology, modeling, and control of lumped parameters of soft robotics, that is, systems of discrete, interconnected, and compliant elements. Distributed parameters, snakelike and continuum soft robotics, are presented in Chap. 20, while Chap. 23 discusses in detail the biomimetic motivations that are often behind soft robotics.

VSA-Cube: Arm with high and low stiffness preset

Author  Centro di Ricerca "E. Piaggio"

Video ID : 470

A modular 2-DOF arm, built with VSA-cube actuation units, performing high- and low-stiffness behaviors.

Chapter 69 — Physical Human-Robot Interaction

Sami Haddadin and Elizabeth Croft

Over the last two decades, the foundations for physical human–robot interaction (pHRI) have evolved from successful developments in mechatronics, control, and planning, leading toward safer lightweight robot designs and interaction control schemes that advance beyond the current capacities of existing high-payload and highprecision position-controlled industrial robots. Based on their ability to sense physical interaction, render compliant behavior along the robot structure, plan motions that respect human preferences, and generate interaction plans for collaboration and coaction with humans, these novel robots have opened up novel and unforeseen application domains, and have advanced the field of human safety in robotics.

This chapter gives an overview on the state of the art in pHRI as of the date of publication. First, the advances in human safety are outlined, addressing topics in human injury analysis in robotics and safety standards for pHRI. Then, the foundations of human-friendly robot design, including the development of lightweight and intrinsically flexible force/torque-controlled machines together with the required perception abilities for interaction are introduced. Subsequently, motionplanning techniques for human environments, including the domains of biomechanically safe, risk-metric-based, human-aware planning are covered. Finally, the rather recent problem of interaction planning is summarized, including the issues of collaborative action planning, the definition of the interaction planning problem, and an introduction to robot reflexes and reactive control architecture for pHRI.

Torque control for teaching peg-in-hole via physical human-robot interaction

Author  Alin-Albu Schäffer

Video ID : 627

Teaching by demonstration is a typical application for impedance controllers. A practical demonstration was given with the task of teaching for automatic insertion of a piston into a motor block. Teaching is realized by guiding the robot with the human hand. It was initially known that the axes of the holes in the motor block were vertically oriented. In the teaching phase, high stiffness components for the orientations were commanded (150 Nm/rad), while the translational stiffness was set to zero. This allowed only translational movements to be demonstrated by the human operator. In the second phase, the taught trajectory has been automatically reproduced by the robot. In this phase, high values were assigned for the translational stiffness (3000 N/m), while the stiffness for the rotations was low (60 Nm/rad). This enabled the robot to compensate for the remaining position errors. For two pistons, the total time for the assembly was 6 s. In this experiment, the assembly was executed automatically four-times faster than by the human operator holding the robot as an input device in the teaching phase (24 s), while the free-hand execution of the task by a human requires about 4 s.

Chapter 12 — Robotic Systems Architectures and Programming

David Kortenkamp, Reid Simmons and Davide Brugali

Robot software systems tend to be complex. This complexity is due, in large part, to the need to control diverse sensors and actuators in real time, in the face of significant uncertainty and noise. Robot systems must work to achieve tasks while monitoring for, and reacting to, unexpected situations. Doing all this concurrently and asynchronously adds immensely to system complexity.

The use of a well-conceived architecture, together with programming tools that support the architecture, can often help to manage that complexity. Currently, there is no single architecture that is best for all applications – different architectures have different advantages and disadvantages. It is important to understand those strengths and weaknesses when choosing an architectural approach for a given application.

This chapter presents various approaches to architecting robotic systems. It starts by defining terms and setting the context, including a recounting of the historical developments in the area of robot architectures. The chapter then discusses in more depth the major types of architectural components in use today – behavioral control (Chap. 13), executives, and task planners (Chap. 14) – along with commonly used techniques for interconnecting connecting those components. Throughout, emphasis will be placed on programming tools and environments that support these architectures. A case study is then presented, followed by a brief discussion of further reading.

Software product line engineering for robotics

Author  Davide Brugali

Video ID : 273

The video illustrates the software product-line approach to the development of robot software control systems and the open source HyperFlex toolchain that supports it.

Chapter 62 — Intelligent Vehicles

Alberto Broggi, Alex Zelinsky, Ümit Özgüner and Christian Laugier

This chapter describes the emerging robotics application field of intelligent vehicles – motor vehicles that have autonomous functions and capabilities. The chapter is organized as follows. Section 62.1 provides a motivation for why the development of intelligent vehicles is important, a brief history of the field, and the potential benefits of the technology. Section 62.2 describes the technologies that enable intelligent vehicles to sense vehicle, environment, and driver state, work with digital maps and satellite navigation, and communicate with intelligent transportation infrastructure. Section 62.3 describes the challenges and solutions associated with road scene understanding – a key capability for all intelligent vehicles. Section 62.4 describes advanced driver assistance systems, which use the robotics and sensing technologies described earlier to create new safety and convenience systems for motor vehicles, such as collision avoidance, lane keeping, and parking assistance. Section 62.5 describes driver monitoring technologies that are being developed to mitigate driver fatigue, inattention, and impairment. Section 62.6 describes fully autonomous intelligent vehicles systems that have been developed and deployed. The chapter is concluded in Sect. 62.7 with a discussion of future prospects, while Sect. 62.8 provides references to further reading and additional resources.

Lane tracking

Author  Alex Zelinsky

Video ID : 836

This video demonstrates robust lane tracking under variable conditions, e.g., rain and poor lighting. The system uses a particle-filter-based approach to achieve robustness.

Chapter 46 — Simultaneous Localization and Mapping

Cyrill Stachniss, John J. Leonard and Sebastian Thrun

This chapter provides a comprehensive introduction in to the simultaneous localization and mapping problem, better known in its abbreviated form as SLAM. SLAM addresses the main perception problem of a robot navigating an unknown environment. While navigating the environment, the robot seeks to acquire a map thereof, and at the same time it wishes to localize itself using its map. The use of SLAM problems can be motivated in two different ways: one might be interested in detailed environment models, or one might seek to maintain an accurate sense of a mobile robot’s location. SLAM serves both of these purposes.

We review the three major paradigms from which many published methods for SLAM are derived: (1) the extended Kalman filter (EKF); (2) particle filtering; and (3) graph optimization. We also review recent work in three-dimensional (3-D) SLAM using visual and red green blue distance-sensors (RGB-D), and close with a discussion of open research problems in robotic mapping.

Fast iterative alignment of pose graphs

Author  Edwin Olson

Video ID : 444

This video provides an illustration of graph-based SLAM, as described in Chap. 46.3.3, Springer Handbook of Robotics, 2nd edn (2016), using the MIT Killian Court data set. Reference: E. Olson, J. Leonard, S. Teller: Fast iterative alignment of pose graphs with poor initial estimates, Proc. IEEE Int. Conf. Robot. Autom. (ICRA), Orlando (2006), pp. 2262 - 2269; doi: 10.1109/ROBOT.2006.1642040.

Chapter 21 — Actuators for Soft Robotics

Alin Albu-Schäffer and Antonio Bicchi

Although we do not know as yet how robots of the future will look like exactly, most of us are sure that they will not resemble the heavy, bulky, rigid machines dangerously moving around in old fashioned industrial automation. There is a growing consensus, in the research community as well as in expectations from the public, that robots of the next generation will be physically compliant and adaptable machines, closely interacting with humans and moving safely, smoothly and efficiently - in other terms, robots will be soft.

This chapter discusses the design, modeling and control of actuators for the new generation of soft robots, which can replace conventional actuators in applications where rigidity is not the first and foremost concern in performance. The chapter focuses on the technology, modeling, and control of lumped parameters of soft robotics, that is, systems of discrete, interconnected, and compliant elements. Distributed parameters, snakelike and continuum soft robotics, are presented in Chap. 20, while Chap. 23 discusses in detail the biomimetic motivations that are often behind soft robotics.

VSA-Cube arm: Drawing on a wavy surface (high stiffness)

Author  Centro di Ricerca "E. Piaggio"

Video ID : 472

A 3-DOF arm, built with VSA-cube units, performing a circle on a wavy surface with preset uniformly high stiffness.

Chapter 18 — Parallel Mechanisms

Jean-Pierre Merlet, Clément Gosselin and Tian Huang

This chapter presents an introduction to the kinematics and dynamics of parallel mechanisms, also referred to as parallel robots. As opposed to classical serial manipulators, the kinematic architecture of parallel robots includes closed-loop kinematic chains. As a consequence, their analysis differs considerably from that of their serial counterparts. This chapter aims at presenting the fundamental formulations and techniques used in their analysis.

Parallel 5R robot

Author  Ilian Bonev

Video ID : 46

This video demonstrates a planar parallel 5R robot that is designed to fully exploit its workspace.