Mobile manipulation requires the integration of methodologies from all aspects of robotics. Instead of tackling each aspect in isolation,mobilemanipulation research exploits their interdependence to solve challenging problems. As a result, novel views of long-standing problems emerge. In this chapter, we present these emerging views in the areas of grasping, control, motion generation, learning, and perception. All of these areas must address the shared challenges of high-dimensionality, uncertainty, and task variability. The section on grasping and manipulation describes a trend towards actively leveraging contact and physical and dynamic interactions between hand, object, and environment. Research in control addresses the challenges of appropriately coupling mobility and manipulation. The field of motion generation increasingly blurs the boundaries between control and planning, leading to task-consistent motion in high-dimensional configuration spaces, even in dynamic and partially unknown environments. A key challenge of learning formobilemanipulation consists of identifying the appropriate priors, and we survey recent learning approaches to perception, grasping, motion, and manipulation. Finally, a discussion of promising methods in perception shows how concepts and methods from navigation and active perception are applied.
Learning dexterous grasps that generalize to novel objects by combining hand and contact models
Author Marek Kopicki, Renaud Detry, Florian Schmidt, Christoph Borst, Rustam Stolkin, Jeremy Wyatt
Video ID : 650
We show how a robot learns grasps for high-DOF hands that generalize to novel objects, given as little as one demonstrated grasp. During grasp learning two types of probability density are learned that model the demonstrated grasp. The first density type (the contact model) models the relationship of an individual finger part to local surface features at its contact point. The second density type (the hand configuration model) models the whole hand configuration during the approach to grasp.