View Chapter

Chapter 30 — Sonar Sensing

Lindsay Kleeman and Roman Kuc

Sonar or ultrasonic sensing uses the propagation of acoustic energy at higher frequencies than normal hearing to extract information from the environment. This chapter presents the fundamentals and physics of sonar sensing for object localization, landmark measurement and classification in robotics applications. The source of sonar artifacts is explained and how they can be dealt with. Different ultrasonic transducer technologies are outlined with their main characteristics highlighted.

Sonar systems are described that range in sophistication from low-cost threshold-based ranging modules to multitransducer multipulse configurations with associated signal processing requirements capable of accurate range and bearing measurement, interference rejection, motion compensation, and target classification. Continuous-transmission frequency-modulated (CTFM) systems are introduced and their ability to improve target sensitivity in the presence of noise is discussed. Various sonar ring designs that provide rapid surrounding environmental coverage are described in conjunction with mapping results. Finally the chapter ends with a discussion of biomimetic sonar, which draws inspiration from animals such as bats and dolphins.

B-scan image of indoor potted tree using multipulse sonar

Author  Roman Kuc

Video ID : 315

By repeatedly clearing the conventional sonar ranging board, each echo produces a spike sequence that is related to the echo amplitude. A brightness-scan (B-scan) image - similar to diagnostic ultrasound images - is generated by transforming the short-term spike density into a gray scale intensity. The video shows a B-scan of a potted tree in an indoor environment containing a doorway (with door knob) and a tree located in front of a cinder-block wall. The B-scan shows the specular environmental features as well as the random tree-leaf structures. Note that the wall behind the tree is also clearly imaged. Reference: R. Kuc: Generating B-scans of the environment with a conventional sonar, IEEE Sensor. J. 8(2), 151 - 160 (2008); doi: 10.1109/JSEN.2007.908242 .

Chapter 53 — Multiple Mobile Robot Systems

Lynne E. Parker, Daniela Rus and Gaurav S. Sukhatme

Within the context of multiple mobile, and networked robot systems, this chapter explores the current state of the art. After a brief introduction, we first examine architectures for multirobot cooperation, exploring the alternative approaches that have been developed. Next, we explore communications issues and their impact on multirobot teams in Sect. 53.3, followed by a discussion of networked mobile robots in Sect. 53.4. Following this we discuss swarm robot systems in Sect. 53.5 and modular robot systems in Sect. 53.6. While swarm and modular systems typically assume large numbers of homogeneous robots, other types of multirobot systems include heterogeneous robots. We therefore next discuss heterogeneity in cooperative robot teams in Sect. 53.7. Once robot teams allow for individual heterogeneity, issues of task allocation become important; Sect. 53.8 therefore discusses common approaches to task allocation. Section 53.9 discusses the challenges of multirobot learning, and some representative approaches. We outline some of the typical application domains which serve as test beds for multirobot systems research in Sect. 53.10. Finally, we conclude in Sect. 53.11 with some summary remarks and suggestions for further reading.

Swarm construction robots

Author  Radhika Nagpal

Video ID : 216

This video describes produced at Harvard's Wyss Institute for Biologically Inspired Engineering, showing the development of swarm robots for construction. These robots follow the biological principles underlying insect swarms to achieve their constructions. The robots follow local control roles that, together with traffic control laws, guarantee the building of desired structures.

Chapter 23 — Biomimetic Robots

Kyu-Jin Cho and Robert Wood

Biomimetic robot designs attempt to translate biological principles into engineered systems, replacing more classical engineering solutions in order to achieve a function observed in the natural system. This chapter will focus on mechanism design for bio-inspired robots that replicate key principles from nature with novel engineering solutions. The challenges of biomimetic design include developing a deep understanding of the relevant natural system and translating this understanding into engineering design rules. This often entails the development of novel fabrication and actuation to realize the biomimetic design.

This chapter consists of four sections. In Sect. 23.1, we will define what biomimetic design entails, and contrast biomimetic robots with bio-inspired robots. In Sect. 23.2, we will discuss the fundamental components for developing a biomimetic robot. In Sect. 23.3, we will review detailed biomimetic designs that have been developed for canonical robot locomotion behaviors including flapping-wing flight, jumping, crawling, wall climbing, and swimming. In Sect. 23.4, we will discuss the enabling technologies for these biomimetic designs including material and fabrication.

A miniature 7g jumping robot

Author  Mirko Kovac, Martin Fuchs, Andre Guignard, Jean-Christophe Zufferey, Dario Floreano

Video ID : 279

Jumping can be a very efficient mode of locomotion for small robots to overcome large obstacles and travel in rough, natural terrain. We present the development and characterization of a novel 5 cm, 7 g jumping robot. It can jump obstacles more than 27 times its own size and outperforms existing jumping robots by one order of magnitude with respect to jump height per weight and jump height per size. It employs elastic elements in a four bar linkage leg system to enable very powerful jumps and adjustments of the jumping force, take-off angle and force profile during the acceleration phase. This 2 min video includes footage of jumping desert locusts, computer aided design (CAD) animations, close ups of the jumps using high-speed imaging at 1000 frames/s and the robot moving in rough terrain.

Chapter 46 — Simultaneous Localization and Mapping

Cyrill Stachniss, John J. Leonard and Sebastian Thrun

This chapter provides a comprehensive introduction in to the simultaneous localization and mapping problem, better known in its abbreviated form as SLAM. SLAM addresses the main perception problem of a robot navigating an unknown environment. While navigating the environment, the robot seeks to acquire a map thereof, and at the same time it wishes to localize itself using its map. The use of SLAM problems can be motivated in two different ways: one might be interested in detailed environment models, or one might seek to maintain an accurate sense of a mobile robot’s location. SLAM serves both of these purposes.

We review the three major paradigms from which many published methods for SLAM are derived: (1) the extended Kalman filter (EKF); (2) particle filtering; and (3) graph optimization. We also review recent work in three-dimensional (3-D) SLAM using visual and red green blue distance-sensors (RGB-D), and close with a discussion of open research problems in robotic mapping.

Graph-based SLAM (Example 1)

Author  Giorgio Grisetti

Video ID : 442

This video provides an illustration of graph-based SLAM, as described in Chap. 46.3.3, Springer Handbook of Robotics, 2nd edn (2016), performed on the campus of the University of Freiburg, Germany.

Chapter 69 — Physical Human-Robot Interaction

Sami Haddadin and Elizabeth Croft

Over the last two decades, the foundations for physical human–robot interaction (pHRI) have evolved from successful developments in mechatronics, control, and planning, leading toward safer lightweight robot designs and interaction control schemes that advance beyond the current capacities of existing high-payload and highprecision position-controlled industrial robots. Based on their ability to sense physical interaction, render compliant behavior along the robot structure, plan motions that respect human preferences, and generate interaction plans for collaboration and coaction with humans, these novel robots have opened up novel and unforeseen application domains, and have advanced the field of human safety in robotics.

This chapter gives an overview on the state of the art in pHRI as of the date of publication. First, the advances in human safety are outlined, addressing topics in human injury analysis in robotics and safety standards for pHRI. Then, the foundations of human-friendly robot design, including the development of lightweight and intrinsically flexible force/torque-controlled machines together with the required perception abilities for interaction are introduced. Subsequently, motionplanning techniques for human environments, including the domains of biomechanically safe, risk-metric-based, human-aware planning are covered. Finally, the rather recent problem of interaction planning is summarized, including the issues of collaborative action planning, the definition of the interaction planning problem, and an introduction to robot reflexes and reactive control architecture for pHRI.

Physical human-robot interaction in imitation learning

Author  Dongheui Lee, Christian Ott, Yoshihiko Nakamura, Gerd Hirzinger

Video ID : 625

This video presents our recent research on the integration of physical human-robot interaction (pHRI) with imitation learning. First, a marker control approach for real-time human-motion imitation is shown. Second, physical coaching in addition to observational learning is applied for the incremental learning of motion primitives. Last, we extend imitation learning to learning pHRI which includes the establishment of intended physical contacts. The proposed methods were implemented and tested using the IRT humanoid robot and DLR’s humanoid upper-body robot Justin.

Chapter 58 — Robotics in Hazardous Applications

James Trevelyan, William R. Hamel and Sung-Chul Kang

Robotics researchers have worked hard to realize a long-awaited vision: machines that can eliminate the need for people to work in hazardous environments. Chapter 60 is framed by the vision of disaster response: search and rescue robots carrying people from burning buildings or tunneling through collapsed rock falls to reach trapped miners. In this chapter we review tangible progress towards robots that perform routine work in places too dangerous for humans. Researchers still have many challenges ahead of them but there has been remarkable progress in some areas. Hazardous environments present special challenges for the accomplishment of desired tasks depending on the nature and magnitude of the hazards. Hazards may be present in the form of radiation, toxic contamination, falling objects or potential explosions. Technology that specialized engineering companies can develop and sell without active help from researchers marks the frontier of commercial feasibility. Just inside this border lie teleoperated robots for explosive ordnance disposal (EOD) and for underwater engineering work. Even with the typical tenfold disadvantage in manipulation performance imposed by the limits of today’s telepresence and teleoperation technology, in terms of human dexterity and speed, robots often can offer a more cost-effective solution. However, most routine applications in hazardous environments still lie far beyond the feasibility frontier. Fire fighting, remediating nuclear contamination, reactor decommissioning, tunneling, underwater engineering, underground mining and clearance of landmines and unexploded ordnance still present many unsolved problems.

Jean Vertut master-slave manipulator arms

Author  James P. Trevelyan

Video ID : 590

Jean Vertut (http://cyberneticzoo.com/teleoperators/1970-2-virgule-remote-controlled-manipulator-jean-vertut-french/), a French engineer, is widely credited with the best and most popular designs for remotely-operated manipulators used in the nuclear industry. Research on devices for nuclear applications is described in the chapter. Here are some other reference links: http://robotics.me.utexas.edu/index.html - research group working on robots for hazardous environments. In this video, one watches the fully automatic Port-Deployed Glovebox Manipulator: Pick and Place in operation. Compare the speed and dexterity of this device with the 1950s era remotely controlled manipulator arms mentioned above. It is hard for automatic devices to even approach the speed of manually-controlled devices, even today after 60 years of robotics research and development.

Chapter 40 — Mobility and Manipulation

Oliver Brock, Jaeheung Park and Marc Toussaint

Mobile manipulation requires the integration of methodologies from all aspects of robotics. Instead of tackling each aspect in isolation,mobilemanipulation research exploits their interdependence to solve challenging problems. As a result, novel views of long-standing problems emerge. In this chapter, we present these emerging views in the areas of grasping, control, motion generation, learning, and perception. All of these areas must address the shared challenges of high-dimensionality, uncertainty, and task variability. The section on grasping and manipulation describes a trend towards actively leveraging contact and physical and dynamic interactions between hand, object, and environment. Research in control addresses the challenges of appropriately coupling mobility and manipulation. The field of motion generation increasingly blurs the boundaries between control and planning, leading to task-consistent motion in high-dimensional configuration spaces, even in dynamic and partially unknown environments. A key challenge of learning formobilemanipulation consists of identifying the appropriate priors, and we survey recent learning approaches to perception, grasping, motion, and manipulation. Finally, a discussion of promising methods in perception shows how concepts and methods from navigation and active perception are applied.

Adaptive synergies for a humanoid robot hand

Author  Centro di Ricerca Enrico Piaggio

Video ID : 658

We present the first implementation of the UNIPI-hand, a highly integrated prototype of an anthropomorphic hand that conciliates the idea of adaptive synergies with a human-form factor. The video validates the hand's versatility by showing grasp and manipulation actions on a variety of objects.

Chapter 9 — Force Control

Luigi Villani and Joris De Schutter

A fundamental requirement for the success of a manipulation task is the capability to handle the physical contact between a robot and the environment. Pure motion control turns out to be inadequate because the unavoidable modeling errors and uncertainties may cause a rise of the contact force, ultimately leading to an unstable behavior during the interaction, especially in the presence of rigid environments. Force feedback and force control becomes mandatory to achieve a robust and versatile behavior of a robotic system in poorly structured environments as well as safe and dependable operation in the presence of humans. This chapter starts from the analysis of indirect force control strategies, conceived to keep the contact forces limited by ensuring a suitable compliant behavior to the end effector, without requiring an accurate model of the environment. Then the problem of interaction tasks modeling is analyzed, considering both the case of a rigid environment and the case of a compliant environment. For the specification of an interaction task, natural constraints set by the task geometry and artificial constraints set by the control strategy are established, with respect to suitable task frames. This formulation is the essential premise to the synthesis of hybrid force/motion control schemes.

Integration of force strategies and natural-admittance control

Author  Brian B. Mathewson, Wyatt S. Newman

Video ID : 685

When mating parts are brought together, small misalignments must be accommodated by responding to contact forces. Using force feedback, a robot may sense contact forces during assembly and invoke a response to guide the parts into their correct mating positions. The proposed approach integrates force-guided strategies into Hogan's impedance control. Stability of both geometric convergence and of contact dynamics are achieved. Geometric convergence is accomplished more reliably than through the use of impedance control alone, and such a convergence is achieved more rapidly than through the use of force-guided strategies alone. This work was published in the ICRA 1995 video proceedings.

Chapter 76 — Evolutionary Robotics

Stefano Nolfi, Josh Bongard, Phil Husbands and Dario Floreano

Evolutionary Robotics is a method for automatically generating artificial brains and morphologies of autonomous robots. This approach is useful both for investigating the design space of robotic applications and for testing scientific hypotheses of biological mechanisms and processes. In this chapter we provide an overview of methods and results of Evolutionary Robotics with robots of different shapes, dimensions, and operation features. We consider both simulated and physical robots with special consideration to the transfer between the two worlds.

Visual navigation with collision avoidance

Author  Dario Floreano

Video ID : 37

Evolved Khepera displaying vision-based collision avoidance. A network of spiking neurons is evolved to drive the vision-based robot in the arena. A llight below the rotating contacts enables continuous evolution, even overnight.

Chapter 39 — Cooperative Manipulation

Fabrizio Caccavale and Masaru Uchiyama

This chapter is devoted to cooperative manipulation of a common object by means of two or more robotic arms. The chapter opens with a historical overview of the research on cooperativemanipulation, ranging from early 1970s to very recent years. Kinematics and dynamics of robotic arms cooperatively manipulating a tightly grasped rigid object are presented in depth. As for the kinematics and statics, the chosen approach is based on the socalled symmetric formulation; fundamentals of dynamics and reduced-order models for closed kinematic chains are discussed as well. A few special topics, such as the definition of geometrically meaningful cooperative task space variables, the problem of load distribution, and the definition of manipulability ellipsoids, are included to give the reader a complete picture ofmodeling and evaluation methodologies for cooperative manipulators. Then, the chapter presents the main strategies for controlling both the motion of the cooperative system and the interaction forces between the manipulators and the grasped object; in detail, fundamentals of hybrid force/position control, proportional–derivative (PD)-type force/position control schemes, feedback linearization techniques, and impedance control approaches are given. In the last section further reading on advanced topics related to control of cooperative robots is suggested; in detail, advanced nonlinear control strategies are briefly discussed (i. e., intelligent control approaches, synchronization control, decentralized control); also, fundamental results on modeling and control of cooperative systems possessing some degree of flexibility are briefly outlined.

Cooperative grasping and transportation of an object using two industrial manipulators

Author  Francesco Basile, Fabrizio Caccavale, Pasquale Chiacchio, Jolanda Coppola, Alessandro Marino

Video ID : 69

This video shows an example of cooperative grasping and transportation of an object using two industrial manipulators. A two-layer hierarchical, kinematic control is adopted, based on a suitable task formulation for general multi-arm systems. Reference: F. Basile, F. Caccavale, P. Chiacchio, J. Coppola, A. Marino: A decentralized kinematic control architecture for collaborative and cooperative multi-arm systems, Mechatronics, 23, 1100-1112 (2013).