View Chapter

Chapter 7 — Motion Planning

Lydia E. Kavraki and Steven M. LaValle

This chapter first provides a formulation of the geometric path planning problem in Sect. 7.2 and then introduces sampling-based planning in Sect. 7.3. Sampling-based planners are general techniques applicable to a wide set of problems and have been successful in dealing with hard planning instances. For specific, often simpler, planning instances, alternative approaches exist and are presented in Sect. 7.4. These approaches provide theoretical guarantees and for simple planning instances they outperform samplingbased planners. Section 7.5 considers problems that involve differential constraints, while Sect. 7.6 overviews several other extensions of the basic problem formulation and proposed solutions. Finally, Sect. 7.8 addresses some important andmore advanced topics related to motion planning.

Powder transfer task using demonstration-guided motion planning

Author  Ron Alterovitz

Video ID : 17

In unstructured environments such as people's homes, robots executing a task might need to avoid obstacles while satisfying the task's motion constraints. In this video, a robot completes a powder transfer task using demonstration-guided motion planning, an approach that combines an asymptotically-optimal sampling-based motion planner with a learned cost metric which encodes the task constraints.

Chapter 28 — Force and Tactile Sensing

Mark R. Cutkosky and William Provancher

This chapter provides an overview of force and tactile sensing, with the primary emphasis placed on tactile sensing. We begin by presenting some basic considerations in choosing a tactile sensor and then review a wide variety of sensor types, including proximity, kinematic, force, dynamic, contact, skin deflection, thermal, and pressure sensors. We also review various transduction methods, appropriate for each general sensor type. We consider the information that these various types of sensors provide in terms of whether they are most useful for manipulation, surface exploration or being responsive to contacts from external agents.

Concerning the interpretation of tactile information, we describe the general problems and present two short illustrative examples. The first involves intrinsic tactile sensing, i. e., estimating contact locations and forces from force sensors. The second involves contact pressure sensing, i. e., estimating surface normal and shear stress distributions from an array of sensors in an elastic skin. We conclude with a brief discussion of the challenges that remain to be solved in packaging and manufacturing damage-tolerant tactile sensors.

Capacitive tactile sensing

Author  Mark Cutkosky

Video ID : 14

Video demonstrating the capacitive tactile sensing suite on the SRI-Meka-Stanford four-fingered hand built for the DARPA ARM-H Mobile Manipulation program.

Chapter 12 — Robotic Systems Architectures and Programming

David Kortenkamp, Reid Simmons and Davide Brugali

Robot software systems tend to be complex. This complexity is due, in large part, to the need to control diverse sensors and actuators in real time, in the face of significant uncertainty and noise. Robot systems must work to achieve tasks while monitoring for, and reacting to, unexpected situations. Doing all this concurrently and asynchronously adds immensely to system complexity.

The use of a well-conceived architecture, together with programming tools that support the architecture, can often help to manage that complexity. Currently, there is no single architecture that is best for all applications – different architectures have different advantages and disadvantages. It is important to understand those strengths and weaknesses when choosing an architectural approach for a given application.

This chapter presents various approaches to architecting robotic systems. It starts by defining terms and setting the context, including a recounting of the historical developments in the area of robot architectures. The chapter then discusses in more depth the major types of architectural components in use today – behavioral control (Chap. 13), executives, and task planners (Chap. 14) – along with commonly used techniques for interconnecting connecting those components. Throughout, emphasis will be placed on programming tools and environments that support these architectures. A case study is then presented, followed by a brief discussion of further reading.

Software product line engineering for robotics

Author  Davide Brugali

Video ID : 273

The video illustrates the software product-line approach to the development of robot software control systems and the open source HyperFlex toolchain that supports it.

Chapter 66 — Robotics Competitions and Challenges

Daniele Nardi, Jonathan Roberts, Manuela Veloso and Luke Fletcher

This chapter explores the use of competitions to accelerate robotics research and promote science, technology, engineering, and mathematics (STEM) education. We argue that the field of robotics is particularly well suited to innovation through competitions. Two broad categories of robot competition are used to frame the discussion: human-inspired competitions and task-based challenges. Human-inspired robot competitions, of which the majority are sports contests, quickly move through platform development to focus on problemsolving and test through game play. Taskbased challenges attempt to attract participants by presenting a high aim for a robotic system. The contest can then be tuned, as required, to maintain motivation and ensure that the progress is made. Three case studies of robot competitions are presented, namely robot soccer, the UAV challenge, and the DARPA (Defense Advanced Research Projects Agency) grand challenges. The case studies serve to explore from the point of view of organizers and participants, the benefits and limitations of competitions, and what makes a good robot competition.

This chapter ends with some concluding remarks on the natural convergence of humaninspired competitions and task-based challenges in the promotion of STEM education, research, and vocations.

Multirobot teamwork in the CMDragons RoboCup SSL team

Author  Manuela Veloso

Video ID : 387

In this video, we can see the coordination and passing strategy as an example of the play of the RoboCup small-size league (SSL), in this case, the CMDragons team from Veloso and her students, at Carnegie Mellon University. The RoboCup SSL has an overhead camera connected to an offboard computer which plans and commands the robots: The perception, planning, and actuation cycle is fully autonomous.

Chapter 61 — Robot Surveillance and Security

Wendell H. Chun and Nikolaos Papanikolopoulos

This chapter introduces the foundation for surveillance and security robots for multiple military and civilian applications. The key environmental domains are mobile robots for ground, aerial, surface water, and underwater applications. Surveillance literallymeans to watch fromabove,while surveillance robots are used to monitor the behavior, activities, and other changing information that are gathered for the general purpose of managing, directing, or protecting one’s assets or position. In a practical sense, the term surveillance is taken to mean the act of observation from a distance, and security robots are commonly used to protect and safeguard a location, some valuable assets, or personal against danger, damage, loss, and crime. Surveillance is a proactive operation,while security robots are a defensive operation. The construction of each type of robot is similar in nature with amobility component, sensor payload, communication system, and an operator control station.

After introducing the major robot components, this chapter focuses on the various applications. More specifically, Sect. 61.3 discusses the enabling technologies of mobile robot navigation, various payload sensors used for surveillance or security applications, target detection and tracking algorithms, and the operator’s robot control console for human–machine interface (HMI). Section 61.4 presents selected research activities relevant to surveillance and security, including automatic data processing of the payload sensors, automaticmonitoring of human activities, facial recognition, and collaborative automatic target recognition (ATR). Finally, Sect. 61.5 discusses future directions in robot surveillance and security, giving some conclusions and followed by references.

Scout robot for outdoor surveillance

Author  Nikos Papanikolopoulos

Video ID : 681

The Scout robot has been developed at the University of Minnesota in partnership with MTS, Honeywell, and ATC. The Scouts are specialized robots that carry out low-level, usually parallel tasks to meet the mission objectives. Scouts can include simple sensory units or units with locomotion, tools, or other specializations. All Scouts have a similar form factor to enable delivery of the ranger by a uniform mechanism. The Scout has a body roughly 11 cm long and 4 cm in diameter (the special foam wheels can expand to 5 cm in diameter). This body fits snugly inside a protective covering called a Sabot which absorbs much of the impact during the launch and enables the Scout to break through a glass window, land safely, and be ready to begin its mission.

Chapter 72 — Social Robotics

Cynthia Breazeal, Kerstin Dautenhahn and Takayuki Kanda

This chapter surveys some of the principal research trends in Social Robotics and its application to human–robot interaction (HRI). Social (or Sociable) robots are designed to interact with people in a natural, interpersonal manner – often to achieve positive outcomes in diverse applications such as education, health, quality of life, entertainment, communication, and tasks requiring collaborative teamwork. The long-term goal of creating social robots that are competent and capable partners for people is quite a challenging task. They will need to be able to communicate naturally with people using both verbal and nonverbal signals. They will need to engage us not only on a cognitive level, but on an emotional level as well in order to provide effective social and task-related support to people. They will need a wide range of socialcognitive skills and a theory of other minds to understand human behavior, and to be intuitively understood by people. A deep understanding of human intelligence and behavior across multiple dimensions (i. e., cognitive, affective, physical, social, etc.) is necessary in order to design robots that can successfully play a beneficial role in the daily lives of people. This requires a multidisciplinary approach where the design of social robot technologies and methodologies are informed by robotics, artificial intelligence, psychology, neuroscience, human factors, design, anthropology, and more.

Home-assistance companion robot in the Robot House

Author  Kerstin Dautenhahn

Video ID : 218

The video results from the research as part of the three-year European Project Accompany (http://accompanyproject.eu/). It shows the year-one scenario. Later scenarios were subsequently used for cumulative evaluation studies with elderly users and their carer-givers in three European countries. This video shows the year-one scenario as it was implemented in the University of Hertfordshire Robot House.

Chapter 8 — Motion Control

Wan Kyun Chung, Li-Chen Fu and Torsten Kröger

This chapter will focus on the motion control of robotic rigid manipulators. In other words, this chapter does not treat themotion control ofmobile robots, flexible manipulators, and manipulators with elastic joints. The main challenge in the motion control problem of rigid manipulators is the complexity of their dynamics and uncertainties. The former results from nonlinearity and coupling in the robot manipulators. The latter is twofold: structured and unstructured. Structured uncertainty means imprecise knowledge of the dynamic parameters and will be touched upon in this chapter, whereas unstructured uncertainty results from joint and link flexibility, actuator dynamics, friction, sensor noise, and unknown environment dynamics, and will be treated in other chapters. In this chapter, we begin with an introduction to motion control of robot manipulators from a fundamental viewpoint, followed by a survey and brief review of the relevant advanced materials. Specifically, the dynamic model and useful properties of robot manipulators are recalled in Sect. 8.1. The joint and operational space control approaches, two different viewpoints on control of robot manipulators, are compared in Sect. 8.2. Independent joint control and proportional– integral–derivative (PID) control, widely adopted in the field of industrial robots, are presented in Sects. 8.3 and 8.4, respectively. Tracking control, based on feedback linearization, is introduced in Sect. 8.5. The computed-torque control and its variants are described in Sect. 8.6. Adaptive control is introduced in Sect. 8.7 to solve the problem of structural uncertainty, whereas the optimality and robustness issues are covered in Sect. 8.8. To compute suitable set point signals as input values for these motion controllers, Sect. 8.9 introduces reference trajectory planning concepts. Since most controllers of robotmanipulators are implemented by using microprocessors, the issues of digital implementation are discussed in Sect. 8.10. Finally, learning control, one popular approach to intelligent control, is illustrated in Sect. 8.11.

Gain change of the PID controller

Author  Wan Kyun Chung

Video ID : 25

The control architecture of the PID tracking controller is introduced. Moreover, according to the gain change, the performance variations of the PID controller implemented in the digital control system are shown.

Chapter 23 — Biomimetic Robots

Kyu-Jin Cho and Robert Wood

Biomimetic robot designs attempt to translate biological principles into engineered systems, replacing more classical engineering solutions in order to achieve a function observed in the natural system. This chapter will focus on mechanism design for bio-inspired robots that replicate key principles from nature with novel engineering solutions. The challenges of biomimetic design include developing a deep understanding of the relevant natural system and translating this understanding into engineering design rules. This often entails the development of novel fabrication and actuation to realize the biomimetic design.

This chapter consists of four sections. In Sect. 23.1, we will define what biomimetic design entails, and contrast biomimetic robots with bio-inspired robots. In Sect. 23.2, we will discuss the fundamental components for developing a biomimetic robot. In Sect. 23.3, we will review detailed biomimetic designs that have been developed for canonical robot locomotion behaviors including flapping-wing flight, jumping, crawling, wall climbing, and swimming. In Sect. 23.4, we will discuss the enabling technologies for these biomimetic designs including material and fabrication.

Biologically-inspired climbing with a hexapedal robot

Author  Matthew J. Spenko, Galen C. Haynes, Jeffrey A. Saunders, Mark R. Cutkosky, Alfred A. Rizzi, Robert J. Full, Daniel E. Koditschek

Video ID : 390

A climbing robot that grasps the microtexture of the surface using special feet and special motions. The development team includes researchers from U Penn, Stanford, Berkeley, Carnegie Mellon and Boston Dynamics.

Chapter 10 — Redundant Robots

Stefano Chiaverini, Giuseppe Oriolo and Anthony A. Maciejewski

This chapter focuses on redundancy resolution schemes, i. e., the techniques for exploiting the redundant degrees of freedom in the solution of the inverse kinematics problem. This is obviously an issue of major relevance for motion planning and control purposes.

In particular, task-oriented kinematics and the basic methods for its inversion at the velocity (first-order differential) level are first recalled, with a discussion of the main techniques for handling kinematic singularities. Next, different firstorder methods to solve kinematic redundancy are arranged in two main categories, namely those based on the optimization of suitable performance criteria and those relying on the augmentation of the task space. Redundancy resolution methods at the acceleration (second-order differential) level are then considered in order to take into account dynamics issues, e.g., torque minimization. Conditions under which a cyclic task motion results in a cyclic joint motion are also discussed; this is a major issue when a redundant manipulator is used to execute a repetitive task, e.g., in industrial applications. The use of kinematic redundancy for fault tolerance is analyzed in detail. Suggestions for further reading are given in a final section.

Configuration space control of KUKA Lightweight Robot LWR with EXARM Exoskeleton

Author  Telerobotics Lab

Video ID : 817

This video shows some advanced inverse kinematics mapping that enables the control of a redundant manipulator (KUKA LWR) by means of Cartesian location and geometric correspondence to the human arm. Thereby the null-space of the robot manipulator can be exploited to enable very intuitive operations. Joint limits and singularities are avoided, as well, by optimized mounting of the robot and the hand.

Chapter 58 — Robotics in Hazardous Applications

James Trevelyan, William R. Hamel and Sung-Chul Kang

Robotics researchers have worked hard to realize a long-awaited vision: machines that can eliminate the need for people to work in hazardous environments. Chapter 60 is framed by the vision of disaster response: search and rescue robots carrying people from burning buildings or tunneling through collapsed rock falls to reach trapped miners. In this chapter we review tangible progress towards robots that perform routine work in places too dangerous for humans. Researchers still have many challenges ahead of them but there has been remarkable progress in some areas. Hazardous environments present special challenges for the accomplishment of desired tasks depending on the nature and magnitude of the hazards. Hazards may be present in the form of radiation, toxic contamination, falling objects or potential explosions. Technology that specialized engineering companies can develop and sell without active help from researchers marks the frontier of commercial feasibility. Just inside this border lie teleoperated robots for explosive ordnance disposal (EOD) and for underwater engineering work. Even with the typical tenfold disadvantage in manipulation performance imposed by the limits of today’s telepresence and teleoperation technology, in terms of human dexterity and speed, robots often can offer a more cost-effective solution. However, most routine applications in hazardous environments still lie far beyond the feasibility frontier. Fire fighting, remediating nuclear contamination, reactor decommissioning, tunneling, underwater engineering, underground mining and clearance of landmines and unexploded ordnance still present many unsolved problems.

Nuclear manipulator, remote-handling equipment (1960)

Author  James P. Trevelyan

Video ID : 588

Demonstration video showing the pouring of a cup of tea – illustrates the dexterity of these popular manipulators which are ubiquitous in nuclear laboratories.