View Chapter

Chapter 49 — Modeling and Control of Wheeled Mobile Robots

Claude Samson, Pascal Morin and Roland Lenain

This chaptermay be seen as a follow up to Chap. 24, devoted to the classification and modeling of basic wheeled mobile robot (WMR) structures, and a natural complement to Chap. 47, which surveys motion planning methods for WMRs. A typical output of these methods is a feasible (or admissible) reference state trajectory for a given mobile robot, and a question which then arises is how to make the physical mobile robot track this reference trajectory via the control of the actuators with which the vehicle is equipped. The object of the present chapter is to bring elements of the answer to this question based on simple and effective control strategies.

The chapter is organized as follows. Section 49.2 is devoted to the choice of controlmodels and the determination of modeling equations associated with the path-following control problem. In Sect. 49.3, the path following and trajectory stabilization problems are addressed in the simplest case when no requirement is made on the robot orientation (i. e., position control). In Sect. 49.4 the same problems are revisited for the control of both position and orientation. The previously mentionned sections consider an ideal robot satisfying the rolling-without-sliding assumption. In Sect. 49.5, we relax this assumption in order to take into account nonideal wheel-ground contact. This is especially important for field-robotics applications and the proposed results are validated through full scale experiments on natural terrain. Finally, a few complementary issues on the feedback control of mobile robots are briefly discussed in the concluding Sect. 49.6, with a list of commented references for further reading on WMRs motion control.

Tracking of an omnidirectional frame with a unicycle-like robot

Author  Guillaume Artus, Pascal Morin, Claude Samson

Video ID : 243

This video shows an experiment performed in 2005 with a unicyle-like robot. A video camera mounted at the top of a robotic arm enabled estimation of the 2-D pose (position/orientation) of the robot with respect to a visual target consisting of three white bars. These bars materialized an omnidirectional moving frame. The experiment demonstrated the capacity of the nonholonomic robot to track in both position and orientation this ominidirectional frame, based on the transverse function control approach.

Chapter 20 — Snake-Like and Continuum Robots

Ian D. Walker, Howie Choset and Gregory S. Chirikjian

This chapter provides an overview of the state of the art of snake-like (backbones comprised of many small links) and continuum (continuous backbone) robots. The history of each of these classes of robot is reviewed, focusing on key hardware developments. A review of the existing theory and algorithms for kinematics for both types of robot is presented, followed by a summary ofmodeling of locomotion for snake-like and continuum mechanisms.

Binary manipulator grasping

Author  Greg Chirikjian

Video ID : 162

Simulation of Greg Chirikjian's binary manipulator grasping a cylindrical object.

Chapter 67 — Humanoids

Paul Fitzpatrick, Kensuke Harada, Charles C. Kemp, Yoshio Matsumoto, Kazuhito Yokoi and Eiichi Yoshida

Humanoid robots selectively immitate aspects of human form and behavior. Humanoids come in a variety of shapes and sizes, from complete human-size legged robots to isolated robotic heads with human-like sensing and expression. This chapter highlights significant humanoid platforms and achievements, and discusses some of the underlying goals behind this area of robotics. Humanoids tend to require the integration ofmany of the methods covered in detail within other chapters of this handbook, so this chapter focuses on distinctive aspects of humanoid robotics with liberal cross-referencing.

This chapter examines what motivates researchers to pursue humanoid robotics, and provides a taste of the evolution of this field over time. It summarizes work on legged humanoid locomotion, whole-body activities, and approaches to human–robot communication. It concludes with a brief discussion of factors that may influence the future of humanoid robots.

Footstep planning modeled as a whole-body, inverse-kinematic problem (experiment)

Author  Eiichi Yoshida

Video ID : 600

The whole-body, inverse-kinematic motion including locomotion in video 596 has been experimentally validated by using HPR-2 humanoid robot. The challenging motion-planning problem of picking up an object almost between its feet has been successfully solved with the proposed framework.

Chapter 76 — Evolutionary Robotics

Stefano Nolfi, Josh Bongard, Phil Husbands and Dario Floreano

Evolutionary Robotics is a method for automatically generating artificial brains and morphologies of autonomous robots. This approach is useful both for investigating the design space of robotic applications and for testing scientific hypotheses of biological mechanisms and processes. In this chapter we provide an overview of methods and results of Evolutionary Robotics with robots of different shapes, dimensions, and operation features. We consider both simulated and physical robots with special consideration to the transfer between the two worlds.

Evolution of visually-guided behaviour on Sussex gantry robot

Author  Phil Husbands

Video ID : 371

Behaviour evolved in the real world on the Sussex gantry robot in 1994. Controllers (evolved neural networks plus visual sampling morphology) are automatically evaluated on the actual robot. The required behaviour is a shape discrimination task: to move to the triangle, while ignoring the rectangle, under very noisy lighting conditions.

Chapter 79 — Robotics for Education

David P. Miller and Illah Nourbakhsh

Educational robotics programs have become popular in most developed countries and are becoming more and more prevalent in the developing world as well. Robotics is used to teach problem solving, programming, design, physics, math and even music and art to students at all levels of their education. This chapter provides an overview of some of the major robotics programs along with the robot platforms and the programming environments commonly used. Like robot systems used in research, there is a constant development and upgrade of hardware and software – so this chapter provides a snapshot of the technologies being used at this time. The chapter concludes with a review of the assessment strategies that can be used to determine if a particular robotics program is benefitting students in the intended ways.

Elementary robotics challenge: Soldier Creek Elementary

Author  Sherry Admire

Video ID : 240

This video shows some of the runs by the Soldier Creek Elementary School participating in a Norman Oklahoma Challenge event of the Junior Botball Challenge (http://www.juniorbotballchallenge.org) in March 2014. These elementary-school students wrote their own C code to guide their robots around the can obstacle and to maneuver their robot to push a large number of cans into the starting box.

Chapter 21 — Actuators for Soft Robotics

Alin Albu-Schäffer and Antonio Bicchi

Although we do not know as yet how robots of the future will look like exactly, most of us are sure that they will not resemble the heavy, bulky, rigid machines dangerously moving around in old fashioned industrial automation. There is a growing consensus, in the research community as well as in expectations from the public, that robots of the next generation will be physically compliant and adaptable machines, closely interacting with humans and moving safely, smoothly and efficiently - in other terms, robots will be soft.

This chapter discusses the design, modeling and control of actuators for the new generation of soft robots, which can replace conventional actuators in applications where rigidity is not the first and foremost concern in performance. The chapter focuses on the technology, modeling, and control of lumped parameters of soft robotics, that is, systems of discrete, interconnected, and compliant elements. Distributed parameters, snakelike and continuum soft robotics, are presented in Chap. 20, while Chap. 23 discusses in detail the biomimetic motivations that are often behind soft robotics.

VSA-Cube arm: Drawing on a wavy surface (selective stiffness)

Author  Centro di Ricerca "E. Piaggio"

Video ID : 474

A 3-DOF arm, built with VSA-cube units, performing a circle on a wavy surface with a proper (selective) stiffness preset.

Chapter 30 — Sonar Sensing

Lindsay Kleeman and Roman Kuc

Sonar or ultrasonic sensing uses the propagation of acoustic energy at higher frequencies than normal hearing to extract information from the environment. This chapter presents the fundamentals and physics of sonar sensing for object localization, landmark measurement and classification in robotics applications. The source of sonar artifacts is explained and how they can be dealt with. Different ultrasonic transducer technologies are outlined with their main characteristics highlighted.

Sonar systems are described that range in sophistication from low-cost threshold-based ranging modules to multitransducer multipulse configurations with associated signal processing requirements capable of accurate range and bearing measurement, interference rejection, motion compensation, and target classification. Continuous-transmission frequency-modulated (CTFM) systems are introduced and their ability to improve target sensitivity in the presence of noise is discussed. Various sonar ring designs that provide rapid surrounding environmental coverage are described in conjunction with mapping results. Finally the chapter ends with a discussion of biomimetic sonar, which draws inspiration from animals such as bats and dolphins.

Monash DSP sonar tracking a moving plane

Author  Lindsay Kleeman

Video ID : 313

A four-transducer system is controlled with a DSP microcontroller which processes echoes to determine the normal incidence and range to a plane reflector. The transducer scans to locate the plane and then tracks the normal-incidence section of the plane as it moves in real time.

Chapter 76 — Evolutionary Robotics

Stefano Nolfi, Josh Bongard, Phil Husbands and Dario Floreano

Evolutionary Robotics is a method for automatically generating artificial brains and morphologies of autonomous robots. This approach is useful both for investigating the design space of robotic applications and for testing scientific hypotheses of biological mechanisms and processes. In this chapter we provide an overview of methods and results of Evolutionary Robotics with robots of different shapes, dimensions, and operation features. We consider both simulated and physical robots with special consideration to the transfer between the two worlds.

Evolved walking in octopod

Author  Phil Husbands

Video ID : 372

Evolved-walking behaviors on an octopod robot. Multiple gaits and obstacle avoidance can be observed. The behavior was evolved in a minimal simulation by Nick Jakobi at Sussex University and is successfully transferred to the real world as is evident from the video.

Chapter 20 — Snake-Like and Continuum Robots

Ian D. Walker, Howie Choset and Gregory S. Chirikjian

This chapter provides an overview of the state of the art of snake-like (backbones comprised of many small links) and continuum (continuous backbone) robots. The history of each of these classes of robot is reviewed, focusing on key hardware developments. A review of the existing theory and algorithms for kinematics for both types of robot is presented, followed by a summary ofmodeling of locomotion for snake-like and continuum mechanisms.

Anna Konda - Motion

Author  Pål Liljebäck

Video ID : 255

Video showing motion of the Anna Konda firefighting robot developed at ROBOTNOR - Centre for Advanced Robotics with the aid of the Norwegian University of Science and Technology (NTNU)/SINTEF. This video shows the general motion of the water hydraulic snake robot.

Chapter 9 — Force Control

Luigi Villani and Joris De Schutter

A fundamental requirement for the success of a manipulation task is the capability to handle the physical contact between a robot and the environment. Pure motion control turns out to be inadequate because the unavoidable modeling errors and uncertainties may cause a rise of the contact force, ultimately leading to an unstable behavior during the interaction, especially in the presence of rigid environments. Force feedback and force control becomes mandatory to achieve a robust and versatile behavior of a robotic system in poorly structured environments as well as safe and dependable operation in the presence of humans. This chapter starts from the analysis of indirect force control strategies, conceived to keep the contact forces limited by ensuring a suitable compliant behavior to the end effector, without requiring an accurate model of the environment. Then the problem of interaction tasks modeling is analyzed, considering both the case of a rigid environment and the case of a compliant environment. For the specification of an interaction task, natural constraints set by the task geometry and artificial constraints set by the control strategy are established, with respect to suitable task frames. This formulation is the essential premise to the synthesis of hybrid force/motion control schemes.

Robotic assembly of emergency-stop buttons

Author  Andreas Stolt, Magnus Linderoth, Anders Robertsson, Rolf Johansson

Video ID : 692

Industrial robots are usually position controlled, which requires high accuracy of the robot and the workcell. Some tasks, such as assembly, are difficult to achieve by using using only position sensing. This work presents a framework for robotic assembly, where a standard position-based robot program is integrated with an external controller performing with force-controlled skills. The framework is used to assemble emergency-stop buttons which had been tailored to be assembled by humans. This work was published in A. Stolt, M. Linderoth, A. Robertsson, R. Johansson: Force controlled assembly of emergency stop button, Proc. Int. Conf. Robot. Autom. (ICRA), Shanghai (2011), pp. 3751–3756