View Chapter

Chapter 28 — Force and Tactile Sensing

Mark R. Cutkosky and William Provancher

This chapter provides an overview of force and tactile sensing, with the primary emphasis placed on tactile sensing. We begin by presenting some basic considerations in choosing a tactile sensor and then review a wide variety of sensor types, including proximity, kinematic, force, dynamic, contact, skin deflection, thermal, and pressure sensors. We also review various transduction methods, appropriate for each general sensor type. We consider the information that these various types of sensors provide in terms of whether they are most useful for manipulation, surface exploration or being responsive to contacts from external agents.

Concerning the interpretation of tactile information, we describe the general problems and present two short illustrative examples. The first involves intrinsic tactile sensing, i. e., estimating contact locations and forces from force sensors. The second involves contact pressure sensing, i. e., estimating surface normal and shear stress distributions from an array of sensors in an elastic skin. We conclude with a brief discussion of the challenges that remain to be solved in packaging and manufacturing damage-tolerant tactile sensors.

The effect of twice dropping, and then gently placing, a two-gram weight on a small capacitive tactile array

Author  Mark Cutkosky

Video ID : 15

Video illustrating the effect of twice dropping, and then gently placing, a two-gram weight on a small capacitive tactile array sampled at 20 Hz. The first drop produces a large dynamic signal in comparison to the static load, but the second drop is missed, demonstrating the value of having dynamic tactile sensing.

Chapter 66 — Robotics Competitions and Challenges

Daniele Nardi, Jonathan Roberts, Manuela Veloso and Luke Fletcher

This chapter explores the use of competitions to accelerate robotics research and promote science, technology, engineering, and mathematics (STEM) education. We argue that the field of robotics is particularly well suited to innovation through competitions. Two broad categories of robot competition are used to frame the discussion: human-inspired competitions and task-based challenges. Human-inspired robot competitions, of which the majority are sports contests, quickly move through platform development to focus on problemsolving and test through game play. Taskbased challenges attempt to attract participants by presenting a high aim for a robotic system. The contest can then be tuned, as required, to maintain motivation and ensure that the progress is made. Three case studies of robot competitions are presented, namely robot soccer, the UAV challenge, and the DARPA (Defense Advanced Research Projects Agency) grand challenges. The case studies serve to explore from the point of view of organizers and participants, the benefits and limitations of competitions, and what makes a good robot competition.

This chapter ends with some concluding remarks on the natural convergence of humaninspired competitions and task-based challenges in the promotion of STEM education, research, and vocations.

Multirobot teamwork in the CMDragons RoboCup SSL team

Author  Manuela Veloso

Video ID : 387

In this video, we can see the coordination and passing strategy as an example of the play of the RoboCup small-size league (SSL), in this case, the CMDragons team from Veloso and her students, at Carnegie Mellon University. The RoboCup SSL has an overhead camera connected to an offboard computer which plans and commands the robots: The perception, planning, and actuation cycle is fully autonomous.

Chapter 51 — Modeling and Control of Underwater Robots

Gianluca Antonelli, Thor I. Fossen and Dana R. Yoerger

This chapter deals with modeling and control of underwater robots. First, a brief introduction showing the constantly expanding role of marine robotics in oceanic engineering is given; this section also contains some historical backgrounds. Most of the following sections strongly overlap with the corresponding chapters presented in this handbook; hence, to avoid useless repetitions, only those aspects peculiar to the underwater environment are discussed, assuming that the reader is already familiar with concepts such as fault detection systems when discussing the corresponding underwater implementation. Themodeling section is presented by focusing on a coefficient-based approach capturing the most relevant underwater dynamic effects. Two sections dealing with the description of the sensor and the actuating systems are then given. Autonomous underwater vehicles require the implementation of mission control system as well as guidance and control algorithms. Underwater localization is also discussed. Underwater manipulation is then briefly approached. Fault detection and fault tolerance, together with the coordination control of multiple underwater vehicles, conclude the theoretical part of the chapter. Two final sections, reporting some successful applications and discussing future perspectives, conclude the chapter. The reader is referred to Chap. 25 for the design issues.

Two underwater Folaga vehicles patrolling a 3-D area

Author  Gianluca Antonelli, Alessandro Marino

Video ID : 94

This video records one of the final experiments for the European project Co3AUV (http://www.Co3-AUVs.eu). It was conducted successfully during February 2012 in collaboration with GraalTech at the NURC (NATO Undersea Research Center) site.

Chapter 20 — Snake-Like and Continuum Robots

Ian D. Walker, Howie Choset and Gregory S. Chirikjian

This chapter provides an overview of the state of the art of snake-like (backbones comprised of many small links) and continuum (continuous backbone) robots. The history of each of these classes of robot is reviewed, focusing on key hardware developments. A review of the existing theory and algorithms for kinematics for both types of robot is presented, followed by a summary ofmodeling of locomotion for snake-like and continuum mechanisms.

Aiko sidewinding

Author  Pål Liljebäck

Video ID : 254

Video of Aiko, a robot developed at the Norwegian University of Science and Technology (NTNU)/SINTEF Advanced Robotics Laboratory. In this video, the robot performs a sidewinding gait.

Chapter 53 — Multiple Mobile Robot Systems

Lynne E. Parker, Daniela Rus and Gaurav S. Sukhatme

Within the context of multiple mobile, and networked robot systems, this chapter explores the current state of the art. After a brief introduction, we first examine architectures for multirobot cooperation, exploring the alternative approaches that have been developed. Next, we explore communications issues and their impact on multirobot teams in Sect. 53.3, followed by a discussion of networked mobile robots in Sect. 53.4. Following this we discuss swarm robot systems in Sect. 53.5 and modular robot systems in Sect. 53.6. While swarm and modular systems typically assume large numbers of homogeneous robots, other types of multirobot systems include heterogeneous robots. We therefore next discuss heterogeneity in cooperative robot teams in Sect. 53.7. Once robot teams allow for individual heterogeneity, issues of task allocation become important; Sect. 53.8 therefore discusses common approaches to task allocation. Section 53.9 discusses the challenges of multirobot learning, and some representative approaches. We outline some of the typical application domains which serve as test beds for multirobot systems research in Sect. 53.10. Finally, we conclude in Sect. 53.11 with some summary remarks and suggestions for further reading.

Transport of a child by swarm-bots

Author  Ivan Aloisio, Michael Bonani, Francesco Mondada, Andre Guignard, Roderich Gross, Dario Floreano

Video ID : 212

This video shows a swarm of s-bot, miniature, mobile robots in swarm-bot formation pulling a child across the floor.

Robot Pebbles - MIT developing self-sculpting smart-sand robots

Author  Kyle Gilpin, Ara Knaian, Kent Koyanagi, Daniela Rus

Video ID : 211

Researchers at the Distributed Robotics Laboratory at MIT's Computer Science and Artificial Intelligence Laboratory are developing tiny robots that could self-assemble into functional tools, then self-disassemble after use. Dubbed the "smart sand," the tiny robots (measuring 0.1 cubic cm) would contain microprocessors and EG magnets which could latch, communicate, and transfer power to each other, enabling them to form life-size replicas of miniature models. https://groups.csail.mit.edu/drl/wiki/index.php?title=Robot_Pebbles

Chapter 36 — Motion for Manipulation Tasks

James Kuffner and Jing Xiao

This chapter serves as an introduction to Part D by giving an overview of motion generation and control strategies in the context of robotic manipulation tasks. Automatic control ranging from the abstract, high-level task specification down to fine-grained feedback at the task interface are considered. Some of the important issues include modeling of the interfaces between the robot and the environment at the different time scales of motion and incorporating sensing and feedback. Manipulation planning is introduced as an extension to the basic motion planning problem, which can be modeled as a hybrid system of continuous configuration spaces arising from the act of grasping and moving parts in the environment. The important example of assembly motion is discussed through the analysis of contact states and compliant motion control. Finally, methods aimed at integrating global planning with state feedback control are summarized.

Reducing uncertainty in robotics surface-assembly tasks

Author  Jing Xiao et al.

Video ID : 356

This video demonstrates how surface assembly strategies with pose estimation can be used to overcome pose uncertainties. The assembly path is updated based on the newly estimated values of parameters after the compliant exploratory move. In this way, the robot is able to successfully overcome disparities between the nominal and the actual poses of the objects to accomplish the assembly. No force sensor is used.

Chapter 74 — Learning from Humans

Aude G. Billard, Sylvain Calinon and Rüdiger Dillmann

This chapter surveys the main approaches developed to date to endow robots with the ability to learn from human guidance. The field is best known as robot programming by demonstration, robot learning from/by demonstration, apprenticeship learning and imitation learning. We start with a brief historical overview of the field. We then summarize the various approaches taken to solve four main questions: when, what, who and when to imitate. We emphasize the importance of choosing well the interface and the channels used to convey the demonstrations, with an eye on interfaces providing force control and force feedback. We then review algorithmic approaches to model skills individually and as a compound and algorithms that combine learning from human guidance with reinforcement learning. We close with a look on the use of language to guide teaching and a list of open issues.

Demonstrations and reproduction of the task of juicing an orange

Author  Florent D'Halluin, Aude Billard

Video ID : 29

Human demonstrations of the task of juicing an orange, and reproductions by the robot in new situations where the objects are located in positions not seen in the demonstrations. URL: http://www.scholarpedia.org/article/Robot_learning_by_demonstration

Chapter 44 — Networked Robots

Dezhen Song, Ken Goldberg and Nak-Young Chong

As of 2013, almost all robots have access to computer networks that offer extensive computing, memory, and other resources that can dramatically improve performance. The underlying enabling framework is the focus of this chapter: networked robots. Networked robots trace their origin to telerobots or remotely controlled robots. Telerobots are widely used to explore undersea terrains and outer space, to defuse bombs and to clean up hazardous waste. Until 1994, telerobots were accessible only to trained and trusted experts through dedicated communication channels. This chapter will describe relevant network technology, the history of networked robots as it evolves from teleoperation to cloud robotics, properties of networked robots, how to build a networked robot, example systems. Later in the chapter, we focus on the recent progress on cloud robotics, and topics for future research.

Teleoperation of a mini-excavator

Author  Keyvan Hashtrudi-Zaad, Simon P. DiMaio, Septimiu E. Salcudean

Video ID : 82

Teleoperation of a mini-excavator over the internet using a virtual master environment. This video is illustrates how a virtual-reality-based interface can assist users to comprehend robotic states. (See m. 44.4.3 of the Springer Handbook of Robotics, 2nd ed (2006) for details).

Chapter 64 — Rehabilitation and Health Care Robotics

H.F. Machiel Van der Loos, David J. Reinkensmeyer and Eugenio Guglielmelli

The field of rehabilitation robotics considers robotic systems that 1) provide therapy for persons seeking to recover their physical, social, communication, or cognitive function, and/or that 2) assist persons who have a chronic disability to accomplish activities of daily living. This chapter will discuss these two main domains and provide descriptions of the major achievements of the field over its short history and chart out the challenges to come. Specifically, after providing background information on demographics (Sect. 64.1.2) and history (Sect. 64.1.3) of the field, Sect. 64.2 describes physical therapy and exercise training robots, and Sect. 64.3 describes robotic aids for people with disabilities. Section 64.4 then presents recent advances in smart prostheses and orthoses that are related to rehabilitation robotics. Finally, Sect. 64.5 provides an overview of recent work in diagnosis and monitoring for rehabilitation as well as other health-care issues. The reader is referred to Chap. 73 for cognitive rehabilitation robotics and to Chap. 65 for robotic smart home technologies, which are often considered assistive technologies for persons with disabilities. At the conclusion of the present chapter, the reader will be familiar with the history of rehabilitation robotics and its primary accomplishments, and will understand the challenges the field may face in the future as it seeks to improve health care and the well being of persons with disabilities.

Gait Trainer GT 1

Author  Reha Stim

Video ID : 504

The Gait Trainer GT1 was one of the first robotic gait trainers and now is widely used in clinics.