View Chapter

Chapter 17 — Limbed Systems

Shuuji Kajita and Christian Ott

A limbed system is a mobile robot with a body, legs and arms. First, its general design process is discussed in Sect. 17.1. Then we consider issues of conceptual design and observe designs of various existing robots in Sect. 17.2. As an example in detail, the design of a humanoid robot HRP-4C is shown in Sect. 17.3. To design a limbed system of good performance, it is important to take into account of actuation and control, like gravity compensation, limit cycle dynamics, template models, and backdrivable actuation. These are discussed in Sect. 17.4.

In Sect. 17.5, we overview divergence of limbed systems. We see odd legged walkers, leg–wheel hybrid robots, leg–arm hybrid robots, tethered walking robots, and wall-climbing robots. To compare limbed systems of different configurations,we can use performance indices such as the gait sensitivity norm, the Froude number, and the specific resistance, etc., which are introduced in Sect. 17.6.

Hexapod ParaWalker-II

Author  Yusuke Ota

Video ID : 520

A twin-frame walking robot, which is a reduced-DOF practical walking robot, developed by Dr. Ota and Prof. Hirose.

Chapter 9 — Force Control

Luigi Villani and Joris De Schutter

A fundamental requirement for the success of a manipulation task is the capability to handle the physical contact between a robot and the environment. Pure motion control turns out to be inadequate because the unavoidable modeling errors and uncertainties may cause a rise of the contact force, ultimately leading to an unstable behavior during the interaction, especially in the presence of rigid environments. Force feedback and force control becomes mandatory to achieve a robust and versatile behavior of a robotic system in poorly structured environments as well as safe and dependable operation in the presence of humans. This chapter starts from the analysis of indirect force control strategies, conceived to keep the contact forces limited by ensuring a suitable compliant behavior to the end effector, without requiring an accurate model of the environment. Then the problem of interaction tasks modeling is analyzed, considering both the case of a rigid environment and the case of a compliant environment. For the specification of an interaction task, natural constraints set by the task geometry and artificial constraints set by the control strategy are established, with respect to suitable task frames. This formulation is the essential premise to the synthesis of hybrid force/motion control schemes.

Recent research in impedance ontrol

Author  Unknown, Case Western Reserve University, Cleveland

Video ID : 684

Experimentacl research on impedance control done in 1991 at Case Western Reserve University in Cleveland, Ohio. The demonstrations involve three scenarios: stiffness control without force sensing; impedance control based on a wrist force sensor; and impedance control based on joint torque sensing. This work was published in the ICRA 1991 video proceedings.

Chapter 65 — Domestic Robotics

Erwin Prassler, Mario E. Munich, Paolo Pirjanian and Kazuhiro Kosuge

When the first edition of this book was published domestic robots were spoken of as a dream that was slowly becoming reality. At that time, in 2008, we looked back on more than twenty years of research and development in domestic robotics, especially in cleaning robotics. Although everybody expected cleaning to be the killer app for domestic robotics in the first half of these twenty years nothing big really happened. About ten years before the first edition of this book appeared, all of a sudden things started moving. Several small, but also some larger enterprises announced that they would soon launch domestic cleaning robots. The robotics community was anxiously awaiting these first cleaning robots and so were consumers. The big burst, however, was yet to come. The price tag of those cleaning robots was far beyond what people were willing to pay for a vacuum cleaner. It took another four years until, in 2002, a small and inexpensive device, which was not even called a cleaning robot, brought the first breakthrough: Roomba. Sales of the Roomba quickly passed the first million robots and increased rapidly. While for the first years after Roomba’s release, the big players remained on the sidelines, possibly to revise their own designs and, in particular their business models and price tags, some other small players followed quickly and came out with their own products. We reported about theses devices and their creators in the first edition. Since then the momentum in the field of domestics robotics has steadily increased. Nowadays most big appliance manufacturers have domestic cleaning robots in their portfolio. We are not only seeing more and more domestic cleaning robots and lawn mowers on the market, but we are also seeing new types of domestic robots, window cleaners, plant watering robots, tele-presence robots, domestic surveillance robots, and robotic sports devices. Some of these new types of domestic robots are still prototypes or concept studies. Others have already crossed the threshold to becoming commercial products.

For the second edition of this chapter, we have decided to not only enumerate the devices that have emerged and survived in the past five years, but also to take a look back at how it all began, contrasting this retrospection with the burst of progress in the past five years in domestic cleaning robotics. We will not describe and discuss in detail every single cleaning robot that has seen the light of the day, but select those that are representative for the evolution of the technology as well as the market. We will also reserve some space for new types of mobile domestic robots, which will be the success stories or failures for the next edition of this chapter. Further we will look into nonmobile domestic robots, also called smart appliances, and examine their fate. Last but not least, we will look at the recent developments in the area of intelligent homes that surround and, at times, also control the mobile domestic robots and smart appliances described in the preceding sections.

WINBOT W710 versus HOBOT 168 (auf Deutsch)

Author  Erwin Prassler

Video ID : 735

Video (in German) compares performance of two robotic window cleaners, namely the Winbot W710 and Hobot 168.

Chapter 21 — Actuators for Soft Robotics

Alin Albu-Schäffer and Antonio Bicchi

Although we do not know as yet how robots of the future will look like exactly, most of us are sure that they will not resemble the heavy, bulky, rigid machines dangerously moving around in old fashioned industrial automation. There is a growing consensus, in the research community as well as in expectations from the public, that robots of the next generation will be physically compliant and adaptable machines, closely interacting with humans and moving safely, smoothly and efficiently - in other terms, robots will be soft.

This chapter discusses the design, modeling and control of actuators for the new generation of soft robots, which can replace conventional actuators in applications where rigidity is not the first and foremost concern in performance. The chapter focuses on the technology, modeling, and control of lumped parameters of soft robotics, that is, systems of discrete, interconnected, and compliant elements. Distributed parameters, snakelike and continuum soft robotics, are presented in Chap. 20, while Chap. 23 discusses in detail the biomimetic motivations that are often behind soft robotics.

Full body compliant humanoid COMAN

Author  IIT - Advanced Robotics

Video ID : 698

The compliant humanoid COMAN is developed by the Department of Advanced Robotics (ADVR), Istituto Italiano di Tecnologia (IIT). http://www.iit.it/en/research/departm... All the achievements shown in this video are attributed to the team work of the Humanoid Group in ADVR, IIT.

Chapter 74 — Learning from Humans

Aude G. Billard, Sylvain Calinon and Rüdiger Dillmann

This chapter surveys the main approaches developed to date to endow robots with the ability to learn from human guidance. The field is best known as robot programming by demonstration, robot learning from/by demonstration, apprenticeship learning and imitation learning. We start with a brief historical overview of the field. We then summarize the various approaches taken to solve four main questions: when, what, who and when to imitate. We emphasize the importance of choosing well the interface and the channels used to convey the demonstrations, with an eye on interfaces providing force control and force feedback. We then review algorithmic approaches to model skills individually and as a compound and algorithms that combine learning from human guidance with reinforcement learning. We close with a look on the use of language to guide teaching and a list of open issues.

Learning compliant motion from human demonstration

Author  Aude Billard

Video ID : 478

This video illustrates how one can teach a robot to display the right amount of stiffness to perform a task successfully. Decrease in stiffness is demonstrated by shaking the robot, while increase in stiffness is conveyed by pressing on the robot's arm (pressure being measured through tactile sensors along the robot's arm). Reference: K. Kronander,A. Billard: Learning compliant manipulation through kinesthetic and tactile human-robot interaction, IEEE Trans. Haptics 7(3), 367-380 (2013); doi: 10.1109/TOH.2013.54 .

Chapter 21 — Actuators for Soft Robotics

Alin Albu-Schäffer and Antonio Bicchi

Although we do not know as yet how robots of the future will look like exactly, most of us are sure that they will not resemble the heavy, bulky, rigid machines dangerously moving around in old fashioned industrial automation. There is a growing consensus, in the research community as well as in expectations from the public, that robots of the next generation will be physically compliant and adaptable machines, closely interacting with humans and moving safely, smoothly and efficiently - in other terms, robots will be soft.

This chapter discusses the design, modeling and control of actuators for the new generation of soft robots, which can replace conventional actuators in applications where rigidity is not the first and foremost concern in performance. The chapter focuses on the technology, modeling, and control of lumped parameters of soft robotics, that is, systems of discrete, interconnected, and compliant elements. Distributed parameters, snakelike and continuum soft robotics, are presented in Chap. 20, while Chap. 23 discusses in detail the biomimetic motivations that are often behind soft robotics.

Dynamic walking of whole-body compliant humanoid COMAN

Author  Chengxu Zhou, Xin Wang, Zhibin Li, Nikolaos Tsagarakis

Video ID : 465

COMAN performing dynamic walking.

Chapter 17 — Limbed Systems

Shuuji Kajita and Christian Ott

A limbed system is a mobile robot with a body, legs and arms. First, its general design process is discussed in Sect. 17.1. Then we consider issues of conceptual design and observe designs of various existing robots in Sect. 17.2. As an example in detail, the design of a humanoid robot HRP-4C is shown in Sect. 17.3. To design a limbed system of good performance, it is important to take into account of actuation and control, like gravity compensation, limit cycle dynamics, template models, and backdrivable actuation. These are discussed in Sect. 17.4.

In Sect. 17.5, we overview divergence of limbed systems. We see odd legged walkers, leg–wheel hybrid robots, leg–arm hybrid robots, tethered walking robots, and wall-climbing robots. To compare limbed systems of different configurations,we can use performance indices such as the gait sensitivity norm, the Froude number, and the specific resistance, etc., which are introduced in Sect. 17.6.

Development of the humanoid robot DARwIn

Author  Dennis Hong

Video ID : 526

The design and development process for humanoid robots by Dr. Muecke and Prof. Hong.

Chapter 72 — Social Robotics

Cynthia Breazeal, Kerstin Dautenhahn and Takayuki Kanda

This chapter surveys some of the principal research trends in Social Robotics and its application to human–robot interaction (HRI). Social (or Sociable) robots are designed to interact with people in a natural, interpersonal manner – often to achieve positive outcomes in diverse applications such as education, health, quality of life, entertainment, communication, and tasks requiring collaborative teamwork. The long-term goal of creating social robots that are competent and capable partners for people is quite a challenging task. They will need to be able to communicate naturally with people using both verbal and nonverbal signals. They will need to engage us not only on a cognitive level, but on an emotional level as well in order to provide effective social and task-related support to people. They will need a wide range of socialcognitive skills and a theory of other minds to understand human behavior, and to be intuitively understood by people. A deep understanding of human intelligence and behavior across multiple dimensions (i. e., cognitive, affective, physical, social, etc.) is necessary in order to design robots that can successfully play a beneficial role in the daily lives of people. This requires a multidisciplinary approach where the design of social robot technologies and methodologies are informed by robotics, artificial intelligence, psychology, neuroscience, human factors, design, anthropology, and more.

Explaining a typical session with Sunflower as a home companion in the Robot House

Author  Kerstin Dautenhahn

Video ID : 221

The video illustrates and explains one of the final showcases of the European project LIREC (http://lirec.eu/project) in the University of Hertfordshire Robot House. The Sunflower robot, developed at UH, provides cognitive and physical assistance in a home scenario. In the video, one of the researchers, Dag Syrdal, explains a typical session in long-term evaluation studies in the Robot House. Sunflower has access to a network of smart sensors in the Robot House. The video also illustrates the concept of migration (moving of the robot's mind/AI to a differently embodied system).

An example of repeated, long-term interaction

Author  Takayuki Kanda

Video ID : 809

This video shows examples of repeated interactions between a robot in a shopping mall and mall visitors. The robot was designed for repeated long-term interaction. It identified visitors using RFID tags and gradually exhibits friendly behaviors over time.

Chapter 78 — Perceptual Robotics

Heinrich Bülthoff, Christian Wallraven and Martin A. Giese

Robots that share their environment with humans need to be able to recognize and manipulate objects and users, perform complex navigation tasks, and interpret and react to human emotional and communicative gestures. In all of these perceptual capabilities, the human brain, however, is still far ahead of robotic systems. Hence, taking clues from the way the human brain solves such complex perceptual tasks will help to design better robots. Similarly, once a robot interacts with humans, its behaviors and reactions will be judged by humans – movements of the robot, for example, should be fluid and graceful, and it should not evoke an eerie feeling when interacting with a user. In this chapter, we present Perceptual Robotics as the field of robotics that takes inspiration from perception research and neuroscience to, first, build better perceptual capabilities into robotic systems and, second, to validate the perceptual impact of robotic systems on the user.

Active in-hand object recognition

Author  Christian Wallraven

Video ID : 569

This video showcases the implementation of active object learning and recognition using the framework proposed in Browatzki et al. [1, 2]. The first phase shows the robot trying to learn the visual representation of several paper cups differing by a few key features. The robot executes a pre-programmed exploration program to look at the cup from all sides. The (very low-resolution) visual input is tracked and so-called key-frames are extracted which represent the (visual) exploration. After learning, the robot tries to recognize cups that have been placed into its hands using a similar exploration program based on visual information - due to the low-resolution input and the highly similar objects, the robot, however, fails to make the correct decision. The video then shows the second, advanced, exploration, which is based on actively seeking the view that is expected to provide maximum information about the object. For this, the robot embeds the learned visual information into a proprioceptive map indexed by the two joint angles of the hand. In this map, the robot now tries to predict the joint-angle combination that provides the most information about the object, given the current state of exploration. The implementation uses particle filtering to track a large number of object (view) hypotheses at the same time. Since the robot now uses a multisensory representation, the subsequent object-recognition trials are all correct, despite poor visual input and highly similar objects. References: [1] B Browatzki, V. Tikhanoff, G. Metta, H.H. Bülthoff, C. Wallraven: Active in-hand object recognition on a humanoid robot, IEEE Trans. Robot. 30(5), 1260-1269 (2014); [2] B. Browatzki, V. Tikhanoff, G. Metta, H.H. Bülthoff, C. Wallraven: Active object recognition on a humanoid robot, Proc. IEEE Int. Conf. Robot. Autom. (ICRA), St. Paul (2012), pp. 2021-2028.