View Chapter

Chapter 64 — Rehabilitation and Health Care Robotics

H.F. Machiel Van der Loos, David J. Reinkensmeyer and Eugenio Guglielmelli

The field of rehabilitation robotics considers robotic systems that 1) provide therapy for persons seeking to recover their physical, social, communication, or cognitive function, and/or that 2) assist persons who have a chronic disability to accomplish activities of daily living. This chapter will discuss these two main domains and provide descriptions of the major achievements of the field over its short history and chart out the challenges to come. Specifically, after providing background information on demographics (Sect. 64.1.2) and history (Sect. 64.1.3) of the field, Sect. 64.2 describes physical therapy and exercise training robots, and Sect. 64.3 describes robotic aids for people with disabilities. Section 64.4 then presents recent advances in smart prostheses and orthoses that are related to rehabilitation robotics. Finally, Sect. 64.5 provides an overview of recent work in diagnosis and monitoring for rehabilitation as well as other health-care issues. The reader is referred to Chap. 73 for cognitive rehabilitation robotics and to Chap. 65 for robotic smart home technologies, which are often considered assistive technologies for persons with disabilities. At the conclusion of the present chapter, the reader will be familiar with the history of rehabilitation robotics and its primary accomplishments, and will understand the challenges the field may face in the future as it seeks to improve health care and the well being of persons with disabilities.

REX

Author  Rex Bionics

Video ID : 511

REX, produced by REX Bionics, is an anthropomorphic lower-body robot designed to help users to stand from sitting, to ascend stair, to walk over ground, without the use of crutches.

Chapter 32 — 3-D Vision for Navigation and Grasping

Danica Kragic and Kostas Daniilidis

In this chapter, we describe algorithms for three-dimensional (3-D) vision that help robots accomplish navigation and grasping. To model cameras, we start with the basics of perspective projection and distortion due to lenses. This projection from a 3-D world to a two-dimensional (2-D) image can be inverted only by using information from the world or multiple 2-D views. If we know the 3-D model of an object or the location of 3-D landmarks, we can solve the pose estimation problem from one view. When two views are available, we can compute the 3-D motion and triangulate to reconstruct the world up to a scale factor. When multiple views are given either as sparse viewpoints or a continuous incoming video, then the robot path can be computer and point tracks can yield a sparse 3-D representation of the world. In order to grasp objects, we can estimate 3-D pose of the end effector or 3-D coordinates of the graspable points on the object.

DTAM: Dense tracking and mapping in real-time

Author  Richard A. Newcombe, Steven J. Lovegrove, Andrew J. Davison

Video ID : 124

This video demonstrates the system described in the paper, "DTAM: Dense Tracking and Mapping in Real-Time" by Richard Newcombe, Steven Lovegrove and Andrew Davison for ICCV 2011.

Chapter 22 — Modular Robots

I-Ming Chen and Mark Yim

This chapter presents a discussion of modular robots from both an industrial and a research point of view. The chapter is divided into four sections, one focusing on existing reconfigurable modular manipulators typically in an industry setting (Sect. 22.2) and another focusing on self-reconfigurable modular robots typically in a research setting (Sect. 22.4). Both sections are sandwiched between the introduction and conclusion sections.

This chapter is focused on design issues. Rather than a survey of existing systems, it presents some of the existing systems in the context of a discussion of the issues and elements in industrial modular robotics and modular robotics research. The reader is encouraged to look at the references for further discussion on any of the presented topics.

4x4ht4a

Author  Hod Lipson

Video ID : 2

Self-reconfiguring cubes that reproduce a chain of cubes. Reference: V. Zykov, E. Mytilinaios, B. Adams, H. LipsonRobotics: Self-reproducing machines, Nature 435, 163-164 (2005); doi:10.1038/435163a

Chapter 61 — Robot Surveillance and Security

Wendell H. Chun and Nikolaos Papanikolopoulos

This chapter introduces the foundation for surveillance and security robots for multiple military and civilian applications. The key environmental domains are mobile robots for ground, aerial, surface water, and underwater applications. Surveillance literallymeans to watch fromabove,while surveillance robots are used to monitor the behavior, activities, and other changing information that are gathered for the general purpose of managing, directing, or protecting one’s assets or position. In a practical sense, the term surveillance is taken to mean the act of observation from a distance, and security robots are commonly used to protect and safeguard a location, some valuable assets, or personal against danger, damage, loss, and crime. Surveillance is a proactive operation,while security robots are a defensive operation. The construction of each type of robot is similar in nature with amobility component, sensor payload, communication system, and an operator control station.

After introducing the major robot components, this chapter focuses on the various applications. More specifically, Sect. 61.3 discusses the enabling technologies of mobile robot navigation, various payload sensors used for surveillance or security applications, target detection and tracking algorithms, and the operator’s robot control console for human–machine interface (HMI). Section 61.4 presents selected research activities relevant to surveillance and security, including automatic data processing of the payload sensors, automaticmonitoring of human activities, facial recognition, and collaborative automatic target recognition (ATR). Finally, Sect. 61.5 discusses future directions in robot surveillance and security, giving some conclusions and followed by references.

Multi-robot operator control unit

Author  Bart Everett

Video ID : 701

The Space and Naval Warfare Systems Center, San Diego (SSC San Diego) has developed an unmanned vehicle and sensor operator interface capable of controlling and monitoring multiple sets of heterogeneous systems simultaneously. The modularity, scalability and flexible user interface of the multirobot operator control unit (MOCU) enable control of a wide range of vehicles and sensors in varying mission scenarios.

Chapter 23 — Biomimetic Robots

Kyu-Jin Cho and Robert Wood

Biomimetic robot designs attempt to translate biological principles into engineered systems, replacing more classical engineering solutions in order to achieve a function observed in the natural system. This chapter will focus on mechanism design for bio-inspired robots that replicate key principles from nature with novel engineering solutions. The challenges of biomimetic design include developing a deep understanding of the relevant natural system and translating this understanding into engineering design rules. This often entails the development of novel fabrication and actuation to realize the biomimetic design.

This chapter consists of four sections. In Sect. 23.1, we will define what biomimetic design entails, and contrast biomimetic robots with bio-inspired robots. In Sect. 23.2, we will discuss the fundamental components for developing a biomimetic robot. In Sect. 23.3, we will review detailed biomimetic designs that have been developed for canonical robot locomotion behaviors including flapping-wing flight, jumping, crawling, wall climbing, and swimming. In Sect. 23.4, we will discuss the enabling technologies for these biomimetic designs including material and fabrication.

The FLEA: Flea-inspired, light jumping robot using elastic catapult with active storage and release mechanism

Author  Minkyun Noh, Seung-Won Kim, Sungmin An, Je-Sung Koh, Kyu-Jin Cho

Video ID : 281

The FLEA: flea-inspired, light jumping robot using elastic catapult with active storage and release mechanism. The robot was created to realize a flea-inspired catapult mechanism with shape-memory-alloy (SMA) spring actuators and a smart composite microstructure. The robot was fabricated with a weight of 1.1 g and a 2 cm body size, so that it can jump a distance of up to 30 times its body size.

Chapter 26 — Flying Robots

Stefan Leutenegger, Christoph Hürzeler, Amanda K. Stowers, Kostas Alexis, Markus W. Achtelik, David Lentink, Paul Y. Oh and Roland Siegwart

Unmanned aircraft systems (UASs) have drawn increasing attention recently, owing to advancements in related research, technology, and applications. While having been deployed successfully in military scenarios for decades, civil use cases have lately been tackled by the robotics research community.

This chapter overviews the core elements of this highly interdisciplinary field; the reader is guided through the design process of aerial robots for various applications starting with a qualitative characterization of different types of UAS. Design and modeling are closely related, forming a typically iterative process of drafting and analyzing the related properties. Therefore, we overview aerodynamics and dynamics, as well as their application to fixed-wing, rotary-wing, and flapping-wing UAS, including related analytical tools and practical guidelines. Respecting use-case-specific requirements and core autonomous robot demands, we finally provide guidelines to related system integration challenges.

Structural, inspection-path planning via iterative, viewpoint resampling with application to aerial robotics

Author  Kostas Alexis

Video ID : 604

This video presents experimental results relevant for the ICRA 2015 paper: A. Bircher, K. Alexis, M. Burri, P. Oettershagen, S. Omari, T. Mantel, R. Siegwart: Structural inspection path planning via iterative viewpoint resampling with application to aerial robotics, IEEE Int. Conf. Robot. Autom. (ICRA), Seattle (2015), pp. 6423 - 6430; doi: 10.1109/ICRA.2015.7140101

Chapter 20 — Snake-Like and Continuum Robots

Ian D. Walker, Howie Choset and Gregory S. Chirikjian

This chapter provides an overview of the state of the art of snake-like (backbones comprised of many small links) and continuum (continuous backbone) robots. The history of each of these classes of robot is reviewed, focusing on key hardware developments. A review of the existing theory and algorithms for kinematics for both types of robot is presented, followed by a summary ofmodeling of locomotion for snake-like and continuum mechanisms.

RDP experimental results

Author  Nabil Simaan

Video ID : 247

Demonstrates a prototype system for transurethral bladder cancer resection. This robot has a 5 mm snake with two segments and three working channels including a custom-made fiberscope, laser ablation and a gripper [1-3]. References: [1] A. Bajo, R. B. Pickens, S. D. Herrell, N. Simaan: A pilot ex-vivo evaluation of a telerobotic system for transurethral intervention and surveillance, The 5th Hamlyn Symp. Medical Robotics (2012), pp. 3-4; [2] A. Bajo, R. B. Pickens, S. D. Herrell, N. Simaan: Constrained motion control of multisegment continuum robots for transurethral bladder resection and surveillance, Proc. IEEE Int. Conf. Robot. Autom. (ICRA), Karlsruhe (2013), pp. 5817-5822; [3] R. E. Goldman, A. Bajo, L. S. MacLachlan, R. Pickens, S. D. Herrell, N. Simaan: Design and performance evaluation of a minimally invasive telerobotic platform for transurethral surveillance and intervention, IEEE Trans. Biomed. Eng. 60(4), 918-925 (2013)

Chapter 15 — Robot Learning

Jan Peters, Daniel D. Lee, Jens Kober, Duy Nguyen-Tuong, J. Andrew Bagnell and Stefan Schaal

Machine learning offers to robotics a framework and set of tools for the design of sophisticated and hard-to-engineer behaviors; conversely, the challenges of robotic problems provide both inspiration, impact, and validation for developments in robot learning. The relationship between disciplines has sufficient promise to be likened to that between physics and mathematics. In this chapter, we attempt to strengthen the links between the two research communities by providing a survey of work in robot learning for learning control and behavior generation in robots. We highlight both key challenges in robot learning as well as notable successes. We discuss how contributions tamed the complexity of the domain and study the role of algorithms, representations, and prior knowledge in achieving these successes. As a result, a particular focus of our chapter lies on model learning for control and robot reinforcement learning. We demonstrate how machine learning approaches may be profitably applied, and we note throughout open questions and the tremendous potential for future research.

Learning motor primitives

Author  Jens Kober, Jan Peters

Video ID : 355

The video shows recent success in robot learning for two basic motor tasks, namely, ball-in-a-cup and ball paddling. The video illustrates Section 15.3.5 -- Policy Search, of the Springer Handbook of Robotics, 2nd edn (2016). Reference: J. Kober, J. Peters: Imitation and reinforcement learning - Practical algorithms for motor primitive learning in robotics, IEEE Robot. Autom. Mag. 17(2), 55-62 (2010)

Chapter 76 — Evolutionary Robotics

Stefano Nolfi, Josh Bongard, Phil Husbands and Dario Floreano

Evolutionary Robotics is a method for automatically generating artificial brains and morphologies of autonomous robots. This approach is useful both for investigating the design space of robotic applications and for testing scientific hypotheses of biological mechanisms and processes. In this chapter we provide an overview of methods and results of Evolutionary Robotics with robots of different shapes, dimensions, and operation features. We consider both simulated and physical robots with special consideration to the transfer between the two worlds.

Resilent machines through continuous self-modeling

Author  Josh Bongard, Victor Zykov, Hod Lipson

Video ID : 114

This video demonstrates a typical experiment with a resilent machine.

Chapter 70 — Human-Robot Augmentation

Massimo Bergamasco and Hugh Herr

The development of robotic systems capable of sharing with humans the load of heavy tasks has been one of the primary objectives in robotics research. At present, in order to fulfil such an objective, a strong interest in the robotics community is collected by the so-called wearable robots, a class of robotics systems that are worn and directly controlled by the human operator. Wearable robots, together with powered orthoses that exploit robotic components and control strategies, can represent an immediate resource also for allowing humans to restore manipulation and/or walking functionalities.

The present chapter deals with wearable robotics systems capable of providing different levels of functional and/or operational augmentation to the human beings for specific functions or tasks. Prostheses, powered orthoses, and exoskeletons are described for upper limb, lower limb, and whole body structures. State-of-theart devices together with their functionalities and main components are presented for each class of wearable system. Critical design issues and open research aspects are reported.

Collaborative control of the Body Extender

Author  Massimo Bergamasco

Video ID : 151

The video shows the numerical and experimental validation of the collaborative control applied to the Body Extender. The control prevents the overturning of the system under the action of gravity by minimally distorting the operator's intended motion.