Robotics for agriculture and forestry (A&F) represents the ultimate application of one of our society’s latest and most advanced innovations to its most ancient and important industries. Over the course of history, mechanization and automation increased crop output several orders of magnitude, enabling a geometric growth in population and an increase in quality of life across the globe. Rapid population growth and rising incomes in developing countries, however, require ever larger amounts of A&F output. This chapter addresses robotics for A&F in the form of case studies where robotics is being successfully applied to solve well-identified problems. With respect to plant crops, the focus is on the in-field or in-farm tasks necessary to guarantee a quality crop and, generally speaking, end at harvest time. In the livestock domain, the focus is on breeding and nurturing, exploiting, harvesting, and slaughtering and processing. The chapter is organized in four main sections. The first one explains the scope, in particular, what aspects of robotics for A&F are dealt with in the chapter. The second one discusses the challenges and opportunities associated with the application of robotics to A&F. The third section is the core of the chapter, presenting twenty case studies that showcase (mostly) mature applications of robotics in various agricultural and forestry domains. The case studies are not meant to be comprehensive but instead to give the reader a general overview of how robotics has been applied to A&F in the last 10 years. The fourth section concludes the chapter with a discussion on specific improvements to current technology and paths to commercialization.
A robot for harvesting sweet peppers in greenhouses
Author Jochen Hemming, Wouter Bac, Bart van Tuijl, Ruud Barth, Eldert van Henten, Jan Bontsema, Erik Pekkeriet
Video ID : 304
This video shows robotic harvesting of sweet-pepper fruits in a commercial Dutch greenhouse in June 2014. The base of the robot consists of two carrier modules. On the first are located the manipulator (nine degrees-of-freedom), specifically developed for this project, the control electronics and the computers. On the sensor carrier module, two 5 megapixel color cameras (comprising a small baseline stereo setup) and a time-of-flight (TOF) camera are installed. Around the sensors, a light grid is placed to illuminate the scene. The sensor system is mounted on a linear motorized slide and can be horizontally moved in and out of the workspace of the manipulator. Machine-vision software localizes ripe fruits and obstacles in 3D. Two different types of end-effectors were designed and tested. The fin-ray gripper features a combined grip and cut mechanism. This end-effector first grips the fruit and after that the peduncle of the fruit is cut. The lip-type end-effector first stabilizes the fruit using a suction cup after which two rings enclose the fruit and cut the peduncle of the fruit. Both end-effectors have a miniature RGB and a TOF camera for refining the fruit position and to determine the fruit pose. This robot demonstrator is one of the results of the EU project CROPS, Clever Robots for Crops (www.crops-robots.eu).